IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Feb 2008
A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization.
This paper presents a new nonrigid monomodality image registration algorithm based on B-splines. The deformation is described by a cubic B-spline field and found by minimizing the energy between a reference image and a deformed version of a floating image. ⋯ The problem is modeled by an inequality constrained optimization problem which is efficiently solved by a combination of the multipliers method and the L-BFGS algorithm to handle the large number of variables and constraints of the registration of 3-D images. Numerical experiments are presented on magnetic resonance images using synthetic deformations and atlas based segmentation.
-
The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.
-
IEEE Trans Med Imaging · Feb 2008
Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model.
Modern medical imaging modalities provide large amounts of information in both the spatial and temporal domains and the incorporation of this information in a coherent algorithmic framework is a significant challenge. In this paper, we present a novel and intuitive approach to combine 3-D spatial and temporal (3-D + time) magnetic resonance imaging (MRI) data in an integrated segmentation algorithm to extract the myocardium of the left ventricle. ⋯ By encoding prior knowledge about cardiac temporal evolution in a parametric framework, an expectation-maximization algorithm optimally tracks the myocardial deformation over the cardiac cycle. The expectation step deforms the level-set function while the maximization step updates the prior temporal model parameters to perform the segmentation in a nonrigid sense.