IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Mar 2011
Simultaneous reconstruction of activity and attenuation for PET/MR.
Medical investigations targeting a quantitative analysis of the position emission tomography (PET) images require the incorporation of additional knowledge about the photon attenuation distribution in the patient. Today, energy range adapted attenuation maps derived from computer tomography (CT) scans are used to effectively compensate for image quality degrading effects, such as attenuation and scatter. Replacing CT by magnetic resonance (MR) is considered as the next evolutionary step in the field of hybrid imaging systems. ⋯ The adverse effects of scattered and accidental gamma coincidences on the quantitative accuracy of PET, as well as artifacts caused by the inherent crosstalk between activity and attenuation estimation are efficiently reduced using enhanced decay event localization provided by time-of-flight PET, accurate correction for accidental coincidences, and a reduced number of unknown attenuation coefficients. First results achieved with measured whole body PET data and reference segmentation from CT showed an absolute mean difference of 0.005 cm⁻¹ (< 20%) in the lungs, 0.0009 cm⁻¹ (< 2%) in case of fat, and 0.0015 cm⁻¹ (< 2%) for muscles and blood. The proposed method indicates a robust and reliable alternative to other MR-AC approaches targeting patient specific quantitative analysis in time-of-flight PET/MR.
-
IEEE Trans Med Imaging · Mar 2011
Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories.
Both acquisition and reconstruction speed are crucial for magnetic resonance (MR) imaging in clinical applications. In this paper, we present a fast reconstruction algorithm for SENSE in partially parallel MR imaging with arbitrary k-space trajectories. ⋯ Variable splitting and the penalty technique reformulate the SENSE model with sparsity regularization as an unconstrained minimization problem, which can be solved by alternating two simple minimizations: One is the total variation and wavelet based denoising that can be quickly solved by several recent numerical methods, whereas the other one involves a linear inversion which is solved by the optimal first order gradient method in our algorithm to significantly improve the performance. Comparisons with several recent parallel imaging algorithms indicate that the proposed method significantly improves the computation efficiency and achieves state-of-the-art reconstruction quality.
-
Spiral projection imaging (SPI) is a 3D, spiral based magnetic resonance imaging (MRI) acquisition scheme that allows for self-navigated motion estimation of all six degrees-of-freedom. The trajectory, a set of spiral planes, is enhanced to accommodate motion tracking by adding orthogonal planes. Rigid-body motion tracking is accomplished by comparing the overlapping data and deducing the motion that is consistent with the comparisons. ⋯ The artifacts of off-resonance, coils sensitivity, and gradient warping impose an unnotable effect on the accuracy of motion estimation. The worst mean accuracy is 0.15° and 0.20 mm for the phantom while the worst mean accuracy is 0.48° and 0.34 mm when imaging a brain, indicating that the nonrigid component in human subjects slightly degrades accuracy. When applied to in vivo motion, the proposed technique considerably reduces motion artifact.