IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Jan 2008
Classification of fMRI time series in a low-dimensional subspace with a spatial prior.
We propose a new method for detecting activation in functional magnetic resonance imaging (fMRI) data. We project the fMRI time series on a low-dimensional subspace spanned by wavelet packets in order to create projections that are as non-Gaussian as possible. ⋯ We expect activated areas that are connected, and impose a spatial prior in the form of a Markov random field. Our approach was validated with in vivo data and realistic synthetic data, where it outperformed a linear model equipped with the knowledge of the true hemodynamic response.
-
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T(2) imaging. They are robust to flow and motion, have diffuse aliasing patterns, and support short readouts and echo times. One drawback is that standard implementations do not support anisotropic field-of-view (FOV) shapes, which are used to match the imaging parameters to the object or region-of-interest. ⋯ It also makes possible new radial imaging applications that were previously unsuitable, such as imaging elongated regions or thin slabs. 2-D PR longitudinal leg images and thin-slab, single breath-hold 3-D PR abdomen images, both with isotropic resolution, demonstrate these new possibilities. No scan time to volume efficiency is lost by using anisotropic FOVs. The acquisition trajectories can be computed on a scan by scan basis.
-
IEEE Trans Med Imaging · Nov 2007
A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction.
This paper presents a novel fuzzy-segmentation method for diffusion tensor (DT) and magnetic resonance (MR) images. Typical fuzzy-segmentation schemes, e.g., those based on fuzzy C means (FCM), incorporate Gaussian class models that are inherently biased towards ellipsoidal clusters characterized by a mean element and a covariance matrix. Tensors in fiber bundles, however, inherently lie on specific manifolds in Riemannian spaces. ⋯ Typical tractography methods for tract delineation, incorporating thresholds on fractional anisotropy and fiber curvature to terminate tracking, can face serious problems arising from partial voluming and noise. For these reasons, tractography often fails to extract thin tracts with sharp changes in orientation, such as the cingulum. The results demonstrate that the proposed method extracts this structure significantly more accurately as compared to tractography.
-
IEEE Trans Med Imaging · Nov 2007
Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information.
In this paper, a nonrigid coregistration algorithm based on a viscous fluid model is proposed that has been optimized for diffusion tensor images (DTI), in which image correspondence is measured by the mutual information criterion. Several coregistration strategies are introduced and evaluated both on simulated data and on brain intersubject DTI data. ⋯ Simulation as well as experimental results show that the proposed viscous fluid model can provide a high coregistration accuracy, although the tensor reorientation was observed to be highly sensitive to the local deformation field. Nevertheless, this coregistration method has demonstrated to significantly improve spatial alignment compared to affine image matching.
-
IEEE Trans Med Imaging · Nov 2007
Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics.
Diffusion tensor magnetic resonance imaging (DT-MRI or DTI) is an imaging modality that is gaining importance in clinical applications. However, in a clinical environment, data have to be acquired rapidly, often at the expense of the image quality. This often results in DTI datasets that are not suitable for complex postprocessing like fiber tracking. ⋯ We show that Riemannian metrics for tensors, and more specifically the log-Euclidean metrics, are a good candidate and that this criterion can be efficiently optimized. Experiments on synthetic data show that our method correctly handles the shrinking effect even with very low SNR, and that the positive definiteness of tensors is always ensured. Results on real clinical data demonstrate the truthfulness of the proposed approach and show promising improvements of fiber tracking in the brain and the spinal cord.