IEEE transactions on medical imaging
-
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T(2) imaging. They are robust to flow and motion, have diffuse aliasing patterns, and support short readouts and echo times. One drawback is that standard implementations do not support anisotropic field-of-view (FOV) shapes, which are used to match the imaging parameters to the object or region-of-interest. ⋯ It also makes possible new radial imaging applications that were previously unsuitable, such as imaging elongated regions or thin slabs. 2-D PR longitudinal leg images and thin-slab, single breath-hold 3-D PR abdomen images, both with isotropic resolution, demonstrate these new possibilities. No scan time to volume efficiency is lost by using anisotropic FOVs. The acquisition trajectories can be computed on a scan by scan basis.
-
IEEE Trans Med Imaging · Jan 2008
Classification of fMRI time series in a low-dimensional subspace with a spatial prior.
We propose a new method for detecting activation in functional magnetic resonance imaging (fMRI) data. We project the fMRI time series on a low-dimensional subspace spanned by wavelet packets in order to create projections that are as non-Gaussian as possible. ⋯ We expect activated areas that are connected, and impose a spatial prior in the form of a Markov random field. Our approach was validated with in vivo data and realistic synthetic data, where it outperformed a linear model equipped with the knowledge of the true hemodynamic response.
-
IEEE Trans Med Imaging · Nov 2007
A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction.
This paper presents a novel fuzzy-segmentation method for diffusion tensor (DT) and magnetic resonance (MR) images. Typical fuzzy-segmentation schemes, e.g., those based on fuzzy C means (FCM), incorporate Gaussian class models that are inherently biased towards ellipsoidal clusters characterized by a mean element and a covariance matrix. Tensors in fiber bundles, however, inherently lie on specific manifolds in Riemannian spaces. ⋯ Typical tractography methods for tract delineation, incorporating thresholds on fractional anisotropy and fiber curvature to terminate tracking, can face serious problems arising from partial voluming and noise. For these reasons, tractography often fails to extract thin tracts with sharp changes in orientation, such as the cingulum. The results demonstrate that the proposed method extracts this structure significantly more accurately as compared to tractography.
-
IEEE Trans Med Imaging · Nov 2007
Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information.
In this paper, a nonrigid coregistration algorithm based on a viscous fluid model is proposed that has been optimized for diffusion tensor images (DTI), in which image correspondence is measured by the mutual information criterion. Several coregistration strategies are introduced and evaluated both on simulated data and on brain intersubject DTI data. ⋯ Simulation as well as experimental results show that the proposed viscous fluid model can provide a high coregistration accuracy, although the tensor reorientation was observed to be highly sensitive to the local deformation field. Nevertheless, this coregistration method has demonstrated to significantly improve spatial alignment compared to affine image matching.
-
IEEE Trans Med Imaging · Nov 2007
Representing diffusion MRI in 5-D simplifies regularization and segmentation of white matter tracts.
We present a new five-dimensional (5-D) space representation of diffusion magnetic resonance imaging (dMRI) of high angular resolution. This 5-D space is basically a non-Euclidean space of position and orientation in which crossing fiber tracts can be clearly disentangled, that cannot be separated in three-dimensional position space. This new representation provides many possibilities for processing and analysis since classical methods for scalar images can be extended to higher dimensions even if the spaces are not Euclidean. ⋯ The purpose of this paper is to explore the possibility of segmenting white matter structures directly as entirely separated bundles in this 5-D space. We will present results from a synthetic model and results on real data of a human brain acquired with diffusion spectrum magnetic resonance imaging (MRI), one of the dMRI of high angular resolution available. These results will lead us to the conclusion that this new high-dimensional representation indeed simplifies the problem of segmentation and regularization.