IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Feb 2003
Comparative StudyMerging parametric active contours within homogeneous image regions for MRI-based lung segmentation.
Inhaled hyperpolarized helium-3 (3He) gas is a new magnetic resonance (MR) contrast agent that is being used to study lung functionality. To evaluate the total lung ventilation from the hyperpolarized 3He MR images, it is necessary to segment the lung cavities. This is difficult to accomplish using only the hyperpolarized 3He MR images, so traditional proton (1H) MR images are frequently obtained concurrent with the hyperpolarized 3He MR examination. ⋯ Experimental results involving merging in synthetic images are provided. The segmentation technique has been employed in lung 1H MR imaging for segmenting the total lung air space. This technology plays a key role in computing the functional air space from MR images that use hyperpolarized 3He gas as a contrast agent.
-
IEEE Trans Med Imaging · Dec 2002
Comparative StudyImplementation, calibration and accuracy testing of an image-enhanced endoscopy system.
This paper presents a new method for image-guided surgery called image-enhanced endoscopy. Registered real and virtual endoscopic images (perspective volume renderings generated from the same view as the endoscope camera using a preoperative image) are displayed simultaneously; when combined with the ability to vary tissue transparency in the virtual images, this provides surgeons with the ability to see beyond visible surfaces and, thus, provides additional exposure during surgery. A mount with four photoreflective spheres is rigidly attached to the endoscope and its position and orientation is tracked using an optical position sensor. ⋯ It is probable that much of the projection error is due to endoscope tracking error rather than calibration error. Two examples of clinical applications are presented to illustrate the usefulness of image-enhanced endoscopy. This method is a useful addition to conventional image-guidance systems, which generally show only the position of the tip (and sometimes the orientation) of a surgical instrument or probe on reformatted image slices.
-
IEEE Trans Med Imaging · Nov 2002
Functional MRI activity characterization using response time shift estimates from curve evolution.
Characterizing the response of the brain to a stimulus based on functional magnetic resonance imaging data is a major challenge due to the fact that the response time delay of the brain may be different from one stimulus phase to the next and from pixel to pixel. To enhance detectability, this work introduces the use of a curve evolution approach that provides separate estimates of the response time shifts at each phase of the stimulus on a pixel-by-pixel basis. ⋯ The algorithm provides a pixel-by-pixel functional characterization of the brain's response. The results based on experimental data show that response time shift estimates, when properly implemented, enhance detectability without sacrificing robustness.
-
IEEE Trans Med Imaging · Aug 2002
Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. ⋯ We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.
-
IEEE Trans Med Imaging · Jul 2002
Estimation of 3-D left ventricular deformation from medical images using biomechanical models.
The quantitative estimation of regional cardiac deformation from three-dimensional (3-D) image sequences has important clinical implications for the assessment of viability in the heart wall. We present here a generic methodology for estimating soft tissue deformation which integrates image-derived information with biomechanical models, and apply it to the problem of cardiac deformation estimation. The method is image modality independent. ⋯ The strains obtained using this approach in open-chest dogs before and after coronary occlusion, exhibit a high correlation with strains produced in the same animals using implanted markers. Further, they show good agreement with previously published results in the literature. This proposed method provides quantitative regional 3-D estimates of heart deformation.