Journal of perinatology : official journal of the California Perinatal Association
-
Recent advances in our understanding of neonatal pulmonary circulation and the underlying pathophysiology of hypoxemic respiratory failure (HRF)/persistent pulmonary hypertension of the newborn (PPHN) have resulted in more effective management strategies. Results from animal studies demonstrate that low alveolar oxygen tension (PAO2) causes hypoxic pulmonary vasoconstriction, whereas an increase in oxygen tension to normoxic levels (preductal arterial partial pressure of oxygen (PaO2) between 60 and 80 mm Hg and/or preductal peripheral capillary oxygen saturation between 90% and 97%) results in effective pulmonary vasodilation. Hyperoxia (preductal PaO2 >80 mm Hg) does not cause further pulmonary vasodilation, and oxygen toxicity may occur when high concentrations of inspired oxygen are used. ⋯ Milrinone may be beneficial as an inodilator and may have specific benefits following prolonged exposure to iNO plus oxygen owing to inhibition of phosphodiesterase (PDE)-3A. Additionally, sildenafil, and, in selected cases, hydrocortisone may be appropriate options after hyperoxia and oxidative stress owing to their effects on PDE-5 activity and expression. Continued investigation into these and other interventions is needed to optimize treatment and improve outcomes.
-
Future priorities for the management of hypoxemic respiratory failure (HRF) and pulmonary hypertension include primary prevention of neonatal lung diseases, 'precision medicine' and translating promising clinical and preclinical research into novel therapies. Promising areas of investigation include noninvasive ventilation strategies, emerging pulmonary vasodilators (for example, cinaciguat, intravenous bosentan, rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ agonists) and hemodynamic support (arginine vasopressin). Research challenges include the optimal timing for primary prevention interventions and development of validated biomarkers that predict later disease or serve as surrogates for long-term respiratory outcomes. ⋯ Trials targeting patient-specific pathobiology may involve less risk than traditional randomized controlled trials that enroll all at-risk neonates. Such approaches would reduce trial costs, potentially with fewer negative trials and improved health outcomes. Initiatives such as the Prematurity and Respiratory Outcomes Program, supported by the National Heart, Lung, and Blood Institute, provide a framework to develop refined outcome measures and early biomarkers that will enhance our understanding of novel, mechanistic therapeutic targets that can be tested in clinical trials in neonates with HRF.
-
In infants with congenital diaphragmatic hernia (CDH), a posterolateral diaphragmatic defect results in herniation of abdominal contents into the chest and compression of the intrathoracic structures. In the most severe cases, hypoplasia of the ipsilateral and contralateral lungs, severe pulmonary hypertension (PH) and left ventricular (LV) hypoplasia/dysfunction all contribute to increased mortality. The management of PH in CDH is complicated by structural and functional changes in the heart, pulmonary vasculature, airways and lung parenchyma; consequently, determining optimal management strategies is challenging. ⋯ In contrast, subacute treatment of PH in CDH with iNO has an important role in recurrent or persistent PH and potentially improves survival. Chronic PH and vascular abnormalities may persist into childhood in patients with CDH, contributing to late mortality. It is unclear how pulmonary vasodilator therapies, such as iNO, sildenafil and bosentan, will modulate late outcomes in CDH with late/chronic PH.
-
Unplanned extubation events (UPEs) in neonates are hazardous to patient safety. Our goal was to reduce UPE rate (#UPEs per 100 ventilator days) by 50% in 12 months at our 25-bed level III inborn unit. ⋯ UPEs in neonates can be reduced with process standardization and frontline staff education, emphasizing vigilant endotracheal tube (ETT) maintenance.
-
Randomized Controlled Trial
Assessment of endotracheal tube placement in newborn infants: a randomized controlled trial.
International resuscitation guidelines recommend clinical assessment and exhaled CO2 to confirm tube placement immediately after intubation. However, exhaled CO2 devices can display false negative results. In comparison, any respiratory function monitor can be used to measure and display gas flow in and out of an endotracheal tube. However, neither method has been examined in detail. We hypothesized that a flow sensor would improve the assessment of tracheal vs esophageal tube placement in neonates with a higher success rate and a shorter time to tube placement confirmation when compared with the use of a quantitative end-tidal CO2 (ETCO2) detector. ⋯ A flow sensor would improve the assessment of successful endotracheal tube placement with a higher success rate and a shorter time compared with an ETCO2 detector.