Computer methods and programs in biomedicine
-
Comput Methods Programs Biomed · Jun 2006
Integral-based filtering of continuous glucose sensor measurements for glycaemic control in critical care.
Hyperglycaemia is prevalent in critical illness and increases the risk of further complications and mortality, while tight control can reduce mortality up to 43%. Adaptive control methods are capable of highly accurate, targeted blood glucose regulation using limited numbers of manual measurements due to patient discomfort and labour intensity. Therefore, the option to obtain greater data density using emerging continuous glucose sensing devices is attractive. ⋯ Monte-Carlo simulation for each patient resulted in an average absolute 1-h glucose prediction error of 6.20% (range: 4.97-8.06%) with an average standard deviation per patient of 5.22% (range: 3.26-8.55%). Note that all the methods and results are generalizable to similar applications outside of critical care, such as less acute wards and eventually ambulatory individuals. Clinically, the results show one possible computational method for managing the larger errors encountered in emerging continuous blood glucose sensors, thus enabling their more effective use in clinical glucose regulation studies.