Computer methods and programs in biomedicine
-
Comput Methods Programs Biomed · Nov 2014
ReviewOpen source EMR software: profiling, insights and hands-on analysis.
The use of open source software in health informatics is increasingly advocated by authors in the literature. Although there is no clear evidence of the superiority of the current open source applications in the healthcare field, the number of available open source applications online is growing and they are gaining greater prominence. This repertoire of open source options is of a great value for any future-planner interested in adopting an electronic medical/health record system, whether selecting an existent application or building a new one. The following questions arise. How do the available open source options compare to each other with respect to functionality, usability and security? Can an implementer of an open source application find sufficient support both as a user and as a developer, and to what extent? Does the available literature provide adequate answers to such questions? This review attempts to shed some light on these aspects. ⋯ More detailed analysis of popular open source software can benefit the potential implementers of electronic health/medical records systems. The number of examined systems and the measures by which to compare them vary across studies, but still rewarding insights start to emerge. Our work is one step toward that goal. Our overall conclusion is that open source options in the medical field are still far behind the highly acknowledged open source products in other domains, e.g. operating systems market share.
-
Comput Methods Programs Biomed · Nov 2014
Detection of c, d, and e waves in the acceleration photoplethysmogram.
Analyzing the acceleration photoplethysmogram (APG) is becoming increasingly important for diagnosis. However, processing an APG signal is challenging, especially if the goal is to detect its small components (c, d, and e waves). ⋯ In this paper, a novel algorithm that can detect c, d, and e waves simultaneously in APG signals of healthy subjects that have low amplitude waves, contain fast rhythm heart beats, and suffer from non-stationary effects was developed. The performance of the proposed method was tested on 27 records collected during rest, resulting in 97.39% sensitivity and 99.82% positive predictivity.
-
Comput Methods Programs Biomed · Nov 2014
Scheduling prioritized patients in emergency department laboratories.
This research focuses on scheduling patients in emergency department laboratories according to the priority of patients' treatments, determined by the triage factor. The objective is to minimize the total waiting time of patients in the emergency department laboratories with emphasis on patients with severe conditions. The problem is formulated as a flexible open shop scheduling problem and a mixed integer linear programming model is proposed. ⋯ Then, the response surface methodology is applied for tuning the GA parameters. The algorithm is tested on a set of real data from an emergency department. Simulation results show that the proposed algorithm can significantly improve the efficiency of the emergency department by reducing the total waiting time of prioritized patients.