Computer methods and programs in biomedicine
-
Comput Methods Programs Biomed · Mar 2018
Assessment of hand superficial oxygenation during ischemia/reperfusion in healthy subjects versus systemic sclerosis patients by 2D near infrared spectroscopic imaging.
Patients affected by systemic sclerosis (SSc) develop functional and structural microcirculatory dysfunction, which progressively evolves towards systemic tissue fibrosis (sclerosis). Disease initially affects distal extremities, which become preferential sites of diagnostic scrutiny. This pilot investigation tested the hypothesis that peripheral microcirculatory dysfunction in SSc could be non-invasively assessed by 2D Near Infrared Spectroscopic (NIRS) imaging of the hand associated with Vascular Occlusion Testing (VOT). NIRS allows measurement of hemoglobin oxygen saturation (StO2) in the blood perfusing the volume tissue under scrutiny. ⋯ This is, to our knowledge, the first application of 2D NIRS imaging of the whole hand to the investigation of microvascular dysfunction in systemic sclerosis. The image processing presented here considered the StO2 in the entire hand allowing a comprehensive view of the spatial heterogeneity of microvascular dysfunction.
-
Comput Methods Programs Biomed · Mar 2018
Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syndrome using oximetry recordings.
The aim of this study was to assess the utility of bispectrum-based oximetry approaches as a complementary tool to traditional techniques in the screening of pediatric sleep apnea-hypopnea syndrome (SAHS). ⋯ Our results suggest that bispectrum provides additional information to anthropometric variables, ODI3 and PSD regarding characterization of changes in the SpO2 signal caused by respiratory events. Thus, oximetry bispectrum can be a useful tool to provide complementary information for screening of moderate-to-severe pediatric SAHS.
-
Comput Methods Programs Biomed · Mar 2018
Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.
To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (Ktrans) for glioma grading and to explore the diagnostic performance of the histogram analysis of Ktrans and blood plasma volume (vp). ⋯ Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor Ktrans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors.