Computer methods and programs in biomedicine
-
Comput Methods Programs Biomed · Jul 2018
A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images.
Several studies have evaluated the reproducibility of the Cobb angle for measuring the degree of scoliotic deformities from X-ray spine images, and proposed different geometric models for describing the spinal curvature. The ellipse was shown to be an adequate geometric form, but was not yet applied for the identification and quantification of scoliotic curvatures. The purpose of this study is therefore to propose and validate a novel computerized methodology for the detection of elliptical patterns from X-ray images to evaluate the extent of the underlying scoliotic deformity. ⋯ The results indicate that the proposed computerized methodology is able to reliably reproduce scoliotic curvatures using the geometric parameters of the underlying ellipses. In comparison to conventional approaches, the proposed methodology potentially produces less errors, requires a relatively low observer interaction, takes into account all vertebrae within the observed scoliotic deformity, and allows for both qualitative and quantitative evaluations that may complement the diagnosis, study and treatment of scoliosis.
-
Comput Methods Programs Biomed · Jul 2018
Development of an adaptive pulmonary simulator for in vitro analysis of patient populations and patient-specific data.
Patient-specific modeling (PSM) is gaining more attention from researchers due to its ability to potentially improve diagnostic capabilities, guide the design of intervention procedures, and optimize clinical management by predicting the outcome of a particular treatment and/or surgical intervention. Due to the hemodynamic diversity of specific patients, an adaptive pulmonary simulator (PS) would be essential for analyzing the possible impact of external factors on the safety, performance, and reliability of a cardiac assist device within a mock circulatory system (MCS). In order to accurately and precisely replicate the conditions within the pulmonary system, a PS should not only account for the ability of the pulmonary system to supply blood flow at specific pressures, but similarly consider systemic outflow dynamics. This would provide an accurate pressure and flow rate return supply back into the left ventricular section of the MCS (i.e. the initial conditions of the left heart). ⋯ The adaptability of this modelling approach allows for the simulation of pulmonary conditions without the limitations of a dedicated hardware platform for use in in vitro investigations.