Movement disorders : official journal of the Movement Disorder Society
-
Review Case Reports
Parkinsonism in Gaucher's disease type 1: ten new cases and a review of the literature.
Parkinsonism has been described in patients with Gaucher's disease (GD). We reviewed the 10 cases of patients with both parkinsonism and GD recorded in the French national GD registry, as well as 49 previously published cases. Relative to the general population, parkinsonism in GD patients (1) was more frequent, (2) occurred at an earlier age, (3) responded less well to levodopa, and (4) was more frequently associated with signs of cortical dysfunction. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) were ineffective on GD-associated parkinsonism, suggesting that parkinsonism itself is not an indication for ERT or SRT in this setting.
-
To determine whether the immediate response to electrode implantation (micro lesion effect, MLE) in the internal segment of the globus pallidus (GPi) predicts symptom improvement with deep brain stimulation (DBS) at 6 months in patients with Parkinson's disease (PD) or generalized dystonia. Electrode implantation in the subthalamic nucleus (STN) prior to electrical stimulation has been reported to predict a beneficial effect of DBS in patients with PD, but whether this is also the case for the GPi in either PD or dystonia patients has not been established. ⋯ One dystonia patient who did not show MLE benefited from DBS. The presence of MLE after electrode implantation in the GPi may help predict motor benefit from DBS in PD and generalized dystonia patients.
-
Case Reports
Deep brain stimulation in dystonia: sonographic monitoring of electrode placement into the globus pallidus internus.
Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective treatment in primary dystonia. Its success depends on the implantation accuracy of the DBS electrode into the targeted GPi. Discrepancies of up to 4 mm between the initial target, selected on preoperative MRI, and the final DBS lead location are caused mainly by caudal brain shift that occurs once the cranium is open. ⋯ Here, we demonstrate for the first time the use of a contemporary clinical high-end TCS system for intraoperative monitoring of DBS electrode position. Herewith, a high-resolution real-time imaging of closely located microelectrodes and of the DBS lead through the intact skull is feasible. Simultaneous color-coded sonographic imaging of arteries near the anatomical target allows further intraoperative refinement of DBS lead positioning, simultaneously preventing hemorrhages.