Annals of biomedical engineering
-
Orthopaedic surgeons are often faced with difficult bone loss problems. Conventional bone grafting is usually accomplished with autogenous iliac crest bone graft that provides osteogenic cells, osteoinductive growth factors, and an osteoconductive matrix. Cadaveric bone allograft and bone graft substitutes are inferior to autogenous bone graft because they fail to supply osteogenic cells or a significant amount of osteoinductive growth factors. ⋯ In the presence of appropriate growth factors these cells can differentiate into osteoblast lineage cells that will form bone in vitro and in vivo. Recent attention has focused on genetic modification of mesenchymal stem cells to both produce and respond to osteogenic growth factors with the goal of developing a tissue engineering strategy for bone repair. This review examines the current potential and limitations of these cellular systems for bone repair.
-
Comparative Study
Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
The objectives of this study were (1) to quantify changes in the mechanical behavior of the intervertebral disc in response to cyclic compressive loading and (2) to determine whether mechanical behavior would be restored following a period of unloading. The elastic and viscoelastic compressive mechanical behaviors of adult sheep motion segments were assessed. Ten thousand cycles of compressive loading resulted in increased elastic stiffness and decreased stress-relaxation. ⋯ Cyclic loading caused a decrease in total relaxation (from 92 to 38 N, p < 0.001) that also returned to initial levels after recovery. The reversible, repeatable effects of cyclic loading and recovery demonstrated in this in vitro study may be attributed to fluid flow. Intervertebral disc fluid transport during the diurnal recovery cycle may be key to understanding intervertebral disc degeneration, as fluid exudation and recovery may be integral to maintaining adequate disc nutrition.
-
Comparative Study
Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues.
The effects of tissue hydration and fixed charge density on hydraulic permeability and creep behavior of cartilaginous tissues have been investigated using the triphasic theory and finite element methods. The empirical model for hydraulic permeability of uncharged gels and Mackie and Meares (1955) model for ion diffusivity were used in the numerical analysis. The hydraulic permeabilities of normal and trypsin-treated porcine annulus fibrosus tissues were measured indirectly. ⋯ A change in glycosaminoglycan content will change both triphasic closed-circuit (or intrinsic) and biphasic open-circuit permeabilities of cartilaginous tissues. Analysis also shows that both fixed charge density and water content play an important role in tissue creep response. This study adds new knowledge to the permeability and creep behavior of cartilaginous tissues and is important for understanding the nutrition in intervertebral disk.
-
We have developed a unique uniaxial stretching device to study axonal injury and neural cell death resulting from brain tissue deformations common in traumatic head injuries. Using displacement control rather than force control, this device is capable of achieving strains >70% and strain rates up to 90 s(-1), well above those currently used for studying axonal injury. ⋯ The entire device can fit into a biological safety cabinet to maintain sterility, and the specimens are convenient for cell culture. This device can be used to investigate a wide range of biomechanical issues involved in diffuse axonal injury.
-
Comparative Study
Nonlinear and frequency-dependent mechanical behavior of the mouse respiratory system.
The assessment of the mechanical properties of the respiratory system is typically done by oscillating flow into the lungs via the trachea, measuring the resulting pressure generated at the trachea, and relating the two signals to each other in terms of some suitable mathematical model. If the perturbing flow signal is broadband and not too large in amplitude, linear behavior is usually assumed and the input impedance calculated. Alternatively, some researchers have used flow signals that are narrow band but large in amplitude, and invoked nonlinear lumped-parameter models to account for the relationship between flow and pressure. ⋯ We then extended this model to include nonlinear resistive and elastic terms. We found that the nonlinear elastic term fit the data better than the linear model or the nonlinear resistance model when amplitudes were large. This model may be useful for detecting overinflation of the lung during mechanical ventilation.