Nutrition
-
Histone methylation patterns are associated with various aspects of biology, including transcriptional regulation. Methylation of histone H3 at lysine 4 (H3K4) leads to transcriptional activation through recruitment of transcription activation complexes onto target genes; in contrast, methylation of histone H3K9, or histone H4K20, leads to transcriptional inactivation attracting heterochromatin protein 1 (HP1). It is not yet known whether jejunal induction of sucrase-isomaltase (Si) and sodium-dependent glucose cotransporter (Sglt1) genes by intake of a high-starch/low-fat diet in rats is regulated by coordinated changes of these histone methylation events. In the present study, we investigated whether these histone modifications at the promoter, enhancer, and transcribed regions of Si and Sglt1 genes in rat jejunum are affected by consumption of a high-starch/low-fat diet. ⋯ These observations suggest that induction of Si and Sglt1 gene expression in rat jejunum by a high-starch/low-fat diet intake is positively associated with histone H3K4 methylation, but not with histone H3K9/H4K20 methylation, or with binding of HP1.
-
There is an unmet need for agents that can stimulate bone healing. The goal of this study was to evaluate the effects of basic proteins from milk whey (milk basic protein [MBP]) on fracture healing in mice. ⋯ MBP supplementation has the potential to improve fracture healing and bone strength in mouse tibiae. MBP could be a potential safe, low-cost, and easily administered nutritional element to prevent secondary fractures in patients with bone fractures.