Nutrition
-
Review
Nutritional factors in the prevention and management of coronary artery disease and heart failure.
Nutritional factors such as magnesium, folic acid, vitamins B12 and B6, L-arginine, and polyunsaturated fatty acids (PUFAs) appear to be significantly beneficial for patients with coronary artery disease (CAD), and in the prevention and arresting the progression of HF and cardiac arrhythmias. Additionally, ingestion of adequate amounts of protein and maintaining normal concentrations of plasma albumin seem to be essential for these patients. These nutrients closely interact with the metabolism of L-arginine-nitric oxide (NO) system, essential fatty acids, and eicosanoids such that beneficial products such as NO, prostaglandin E1, prostacyclin, prostaglandin I3, lipoxins, resolvins, and protectins are generated and synthesis of proinflammatory cytokines is suppressed that results in platelet anti-aggregation, vasodilation, angiogenesis, and prevention of CAD, cardiac arrhythmias, and stabilization of HF. This implies that individuals at high risk for CAD, cardiac arrhythmias, and HF and those who have these diseases need to be screened for plasma levels of magnesium, folic acid, vitamins B12 and B6, L-arginine, NO, various PUFAs, lipoxin A4, resolvins, protectins, asymmetrical dimethylarginine (an endogenous inhibitor of NO), albumin, and various eicosanoids and cytokines and correct their abnormalities to restore normal physiology.
-
Randomized Controlled Trial Multicenter Study
Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula.
The aim of this study was to evaluate whether an iron-fortified formula with a concentration of lactoferrin would significantly improve the hematologic indexes and iron status in term infants compared with those same values in infants fed an iron-fortified formula without lactoferrin. ⋯ When infants who were exclusively breastfed were supplemented with lactoferrin-fortified milk, significant increases in TBIC and iron absorption in the intestine were seen.
-
Telomeres are long hexamer (TTAGGG) repeats at the ends of chromosomes, and contribute to maintenance of chromosomal stability. Telomere shortening has been linked to cancers and other chronic diseases in adults, although evidence for causal associations is limited. The aim of this study was to determine whether nutritional factors are associated with telomere length (TL) in children. ⋯ To the best of our knowledge, this is the first investigation of the association between telomere length and micronutrients in healthy children. The reason for the inverse relationship of TL with zinc is unknown but could be the result of an increase in telomere sequence deletions caused by labile zinc induction of oxidative stress. These findings should be corroborated in other studies before nutritional recommendations might be considered.