Nutrition
-
Space travelers experience a flight duration-dependent loss in weight and body mass while in a microgravity environment, despite the absence of increased energy expenditure. Anorexia in space can lead to in-flight caloric deficits of 1330 kcal per 70 kg astronaut per day in the presence of abundant food and has a critical effect on endurance and performance. Microgravity, alterations in the light-and-dark cycle, and exposure to radiation energy are the environmental stresses believed to influence appetite, food intake, and gastrointestinal function during space flight. ⋯ Modulation of hypothalamic activity, 5-HT, and CRF play a critical role in anorexia related to microgravity and circadian rhythm alterations. Specific gene knockout mice (e.g., 5-HT or CRF and their respective receptors) may prove fruitful in defining the pathways by which anorexia in space occurs. An understanding of these pathophysiologic problems as they relate to appetite, food intake, gastric emptying and gastrointestinal function, sufficiently to derive successful practical solutions, may lead to a quantitative enhancement of physiologic well-being and performance status, serving as a productive countermeasure in space.
-
A strategic use of resources is essential to achieving long-duration space travel and understanding the human physiological changes in space, including the roles of food and nutrition in space. To effectively address the challenges of space flight, the Bioastronautics Initiative, undertaken in 2001, expands extramural collaboration and leverages unique capabilities of the scientific community and the federal government, all the while applying this integrated knowledge to Earth-based problems. Integral to the National Aeronautics and Space Administration's missions in space is the reduction of risk of medical complications, particularly during missions of long duration. ⋯ The early approach applied terrestrial clinical judgment to predict medical problems in space. Space medicine has evolved to an evidence-based approach with the use of biomedical data gathered and lessons learned from previous space flight missions to systematically aid in decision making. This approach led, for example, to the determination of preliminary nutritional requirements for space flight, and it aids in the development of nutrition itself as a countermeasure to support nutritional mitigation of adaptation to space.
-
Space flight and the accompanying diminished muscular activity lead to a loss of body nitrogen and muscle function. These losses may affect crew capabilities and health in long-duration missions. Space flight alters protein metabolism such that the body is unable to maintain protein synthetic rates. ⋯ We have demonstrated that minimal resistance exercise preserves muscle protein synthesis throughout bedrest. In addition, ongoing work indicates that an essential amino acid and carbohydrate supplement may ameliorate the loss of lean body mass and muscle strength associated with 28 d of bedrest. The investigation of inactivity-induced alterations in protein metabolism, during space flight or prolonged bedrest, is applicable to clinical populations and, in a more general sense, to the problems associated with the decreased activity that occur with aging.
-
There is a growing body of evidence from the National Aeronautics and Space Administration and the Russian space program showing that humans exposed to the microgravity environment of space have a greater risk for developing renal stones. Increased bone resorption and the attendant hypercalciuria and hyperphosphaturia contribute significantly to raising the urinary state of saturation with respect to the calcium salts, namely calcium oxalate and calcium phosphate. In addition, other environmental and dietary factors may adversely affect urine composition and increase stone formation risk during space flight. ⋯ Taken together, these findings support the use of nutritional recommendations for crew members that would serve to reduce the stone-forming propensity of the urinary environment. Pharmacologic intervention should be directed at raising urinary volumes, diminishing bone losses, and preventing reductions in urinary pH and citrate. Success in reducing the risk for stone formation in astronauts would also be of potential major benefit to the estimated 20 million Americans with nephrolithiasis.
-
Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. ⋯ We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.