Journal of neurotrauma
-
Journal of neurotrauma · Jan 2016
Neuroprotective effects of Co-ultraPEALut on secondary inflammatory process and autophagy involved in traumatic brain injury.
Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. In the present study, we performed a widely used model of TBI to determine the neuroprotective propriety of palmitoylethanolamide (PEA) and the antioxidant effect of a flavonoid luteolin (Lut), given as a co-ultramicronized compound Co-ultraPEALut. We demonstrated that the treatment with Co-ultraPEALut resulted in a significant improvement of motor and cognitive recovery after controlled cortical impact, as well as markedly reducing lesion volumes. ⋯ In addition, treatment with Co-ultraPEALut significantly enhanced the post-TBI expression of the neuroprotective neurotrophins glial cell line-derived neurotrophic factor compared with vehicle. Co-ultraPEALut at the dose of 1 mg/kg also modulated apoptosis, the release of cytokine and reactive oxygen species, the activation of chymase, tryptase, and nitrotyrosine, and inhibited autophagy. Thus, our data demonstrated that Co-ultraPEALut at a lower dose compared with PEA alone can exert neuroprotective effects and the combination of both could improve their ability to counteract the neurodegeneration and neuroinflammation induced by TBI.
-
Journal of neurotrauma · Jan 2016
Decompressive Craniectomy increases Brain Lesion Volume and exacerbates Functional Impairment in Closed Head Injury in Mice.
Decompressive craniectomy has been widely used in patients with head trauma. The randomized clinical trial on an early decompression (DECRA) demonstrated that craniectomy did not improve the neurological outcome, in contrast to previous animal experiments. The goal of our study was to analyze the effect of decompressive craniectomy in a murine model of head injury. ⋯ Decompressive craniectomy applied after closed head injury in mice leads to additional structural and functional impairment. The surgical decompression via craniectomy promotes brain edema formation and contusional blossoming in our model. This additive effect of combined mechanical and surgical trauma may explain the results of the DECRA trial and should be explored further in experiments.
-
Journal of neurotrauma · Jan 2016
Chronic Hormonal Imbalance and Adipose Redistribution Is Associated with Hypothalamic Neuropathology following Blast Exposure.
Endocrine disorders have been shown to be a consequence of blast traumatic brain injury in soldiers returning from military conflicts. Hormone deficiency and adrenocorticotropic hormone (ACTH) dysfunction can lead to symptoms such as fatigue, anxiety, irritability, insomnia, sexual dysfunction, and decreased quality of life. Given these changes following blast exposure, the current study focused on investigating chronic pathology within the hypothalamus following blast, in addition to systemic effects. ⋯ The slower rate of increase in their weight was associated with changes in ACTH, IL-1β, and leptin levels. Further, histological analysis indicated elevated levels of cleaved caspase-3 positive cells within the hypothalamus. The data suggest that long-term outcomes of brain injury occurring from blast exposure include dysfunction of the hypothalamus, which leads to compromised hormonal function, elevated biological stress-related hormones, and subsequent adipose tissue remodeling.
-
Journal of neurotrauma · Jan 2016
Combination Therapies for Traumatic Brain Injury: Retrospective Considerations.
Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. ⋯ One study demonstrated worse results with the combination in comparison with monotherapies. While specific research findings are reported elsewhere, this article provides an overview of the study designs, insights, and recommendations for future research aimed at therapy development for TBI.