Journal of neurotrauma
-
Journal of neurotrauma · Oct 2024
Pedal Reaction Forces and Electromyography Responses Indicate Eccentric Contractions During Motorized Cycling in a Rat Model of Incomplete Spinal Cord Injury.
Motorized cycling (MC) is utilized as an alternative to traditional exercise in individuals who are unable to perform voluntary movements post-spinal cord injury. Although rodent models of MC often show more positive outcomes when compared with clinical studies, the cause of this difference is unknown. We postulate that biomechanical differences between rats and humans may contribute to this discrepancy. ⋯ Rhythmic forces resulted from induced eccentric muscle contractions that increased (amplitude and prevalence) at higher cadences, whereas nonrhythmic forces showed the opposite pattern. Our results suggest that muscle activity during MC in rats depends on the stretch reflex, which, in turn, depends on the rate of muscle lengthening that is modulated by cadence. Additionally, we provide a framework for understanding MC that may help translate results from rat models to clinical use in the future.
-
Journal of neurotrauma · Oct 2024
Magnetic Resonance Imaging Parameters in the Subacute Phase after Traumatic Cervical Spinal Cord Injury: A Prospective, Observational Longitudinal Study. Part 1: Conventional Imaging Characteristics.
Magnetic resonance imaging (MRI) remains the gold standard for evaluating spinal cord tissue damage after spinal cord injury (SCI). Several MRI findings may have some prognostic potential, but their evolution over time, especially from the subacute to the chronic phase has not been studied extensively. We performed a prospective observational longitudinal study exploring the evolution of MRI parameters from the subacute to chronic phase after human traumatic cervical SCI. ⋯ The basic score and Sagittal Grade at 1 month were predictive for motor function 3 months after SCI and for neurological recovery between 1 and 3 months after injury. The study contributes valuable insights into the utility of routine MRI sequences for evaluating traumatic cervical SCI during the subacute to chronic phase. The identified MRI parameters and scores offer prognostic information and could support clinical decision-making.
-
Journal of neurotrauma · Oct 2024
Spinal cord blood perfusion deficit is associated with clinical impairment after spinal cord injury.
Spinal cord injury (SCI) results in intramedullary microvasculature disruption and blood perfusion deficit at and remote from the injury site. However, the relationship between remote vascular impairment and functional recovery remains understudied. We characterized perfusion impairment in vivo, rostral to the injury, using magnetic resonance imaging (MRI), and investigated its association with lesion extent and impairment following SCI. ⋯ This study shows clinically eloquent perfusion deficit rostral to a SCI, its magnitude driven by injury severity. These findings indicate trauma-induced widespread microvascular alterations beyond the injury site. Perfusion MRI matrices in the spinal cord hold promise as biomarkers for monitoring treatment effects and dynamic changes in microvasculature integrity following SCI.
-
Journal of neurotrauma · Oct 2024
microRNA Profile Changes in Brain, Cerebrospinal Fluid, and Blood Following Low-Level Repeated Blast Exposure in a Rat Model.
It is well documented that service members are exposed to repeated low-level blast overpressure during training with heavy weapons such as artillery, mortars and explosive breaching. Often, acute symptoms associated with these exposures are transient but cumulative effect of low-level repeated blast exposures (RBEs) can include persistent deficits in cognitive and behavioral health. Thus far, reliable diagnostic biomarkers which can guide countermeasure strategies have not been identified. ⋯ Contrarily, Let-7 family miRNAs have neuroprotective role and their downregulation suggests progression of blast induced traumatic brain injury (bTBI) with RBE at 14× -8.5 psi. Repeated blast caused alterations in miRNAs that are likely involved in vascular integrity, inflammation, and cell death. These results indicate that miRNAs are differentially dysregulated in response to blast injuries and may represent better prognostic and diagnostic biomarkers than traditional molecules to identify blast-specific brain injury.
-
Journal of neurotrauma · Oct 2024
Behavioral and Cognitive Consequences of Spreading Depolarizations: A Translational Scoping Review.
Spreading depolarizations (SDs) are self-propagating waves of mass depolarization that cause silencing of brain activity and have the potential to impact brain function and behavior. In the eight decades following their initial discovery in 1944, numerous publications have studied the cellular and molecular underpinning of SDs, but fewer have focused on the impact of SDs on behavior and cognition. ⋯ This study summarizes the known behavioral and cognitive consequences of SDs based on historical studies on awake animals, recent experimental paradigms, and modern clinical examples. This scoping review showcases our current understanding of the impact of SDs on cognition and behavior and highlights the need for continued research on the consequences of SDs.