Journal of neurotrauma
-
Journal of neurotrauma · Jun 2019
Randomized Controlled Trial Comparative StudyKinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training.
Recent data demonstrate improved locomotion with high-intensity locomotor training (LT) in individuals with incomplete spinal cord injury (iSCI), although concerns remain regarding reinforcement of abnormal motor strategies. The present study evaluated the effects of LT intensity on kinematic and neuromuscular coordination in individuals with iSCI. Using a randomized, crossover design, participants with iSCI received up to 20 sessions of high-intensity LT, with attempts to achieve 70-85% of age-predicted maximum heart rate (HRmax), or low-intensity LT (50-65% HRmax), following which the other intervention was performed. ⋯ These findings suggest greater neuromuscular complexity may be due to LT and not necessarily differences in speeds. Only selected kinematic changes (i.e., weak hip excursion) was correlated to improvements in treadmill speed. In conclusion, LT intensity can facilitate gains in kinematic variables and neuromuscular synergies in individuals with iSCI.
-
Journal of neurotrauma · May 2019
Randomized Controlled TrialSelf-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury.
Neuromodulation of spinal networks can improve motor control after spinal cord injury (SCI). The objectives of this study were to (1) determine whether individuals with chronic paralysis can stand with the aid of non-invasive electrical spinal stimulation with their knees and hips extended without trainer assistance, and (2) investigate whether postural control can be further improved following repeated sessions of stand training. Using a double-blind, balanced, within-subject cross-over, and sham-controlled study design, 15 individuals with SCI of various severity received transcutaneous electrical spinal stimulation to regain self-assisted standing. ⋯ Quality of balance control was practice-dependent, and improved with subsequent training. During self-initiated body-weight displacements in standing enabled by spinal stimulation, high levels of leg muscle activity emerged, and depended on the amount of muscle loading. Our findings indicate that the lumbosacral spinal networks can be modulated transcutaneously using electrical spinal stimulation to facilitate self-assisted standing after chronic motor and sensory complete paralysis.
-
Journal of neurotrauma · Apr 2019
Randomized Controlled TrialRepetitive Transcranial Magnetic Stimulation with Resting-State Network Targeting for Treatment-Resistant Depression in Traumatic Brain Injury: A Randomized, Controlled, Double-Blinded Pilot Study.
Repetitive transcranial magnetic stimulation (rTMS) has demonstrated antidepressant efficacy but has limited evidence in depression associated with traumatic brain injury (TBI). Here, we investigate the use of rTMS targeted with individualized resting-state network mapping (RSNM) of dorsal attention network (DAN) and default mode network (DMN) in subjects with treatment-resistant depression associated with concussive or moderate TBI. The planned sample size was 50 with first interim analysis planned at 20, but only 15 were enrolled before the study was terminated for logistical reasons. ⋯ Active treatment led to increased sgACC-DMN connectivity (d = 1.55) and increased sgACC anti-correlation with the left- and right-sided stimulation sites (d = -1.26 and -0.69, respectively). This pilot study provides evidence that RSNM-targeted rTMS is feasible in TBI patients with depression. Given the dearth of existing evidence-based treatments for depression in this patient population, these preliminarily encouraging results indicate that larger controlled trials are warranted.
-
Journal of neurotrauma · Mar 2019
Randomized Controlled Trial Multicenter StudyClinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury.
Human neural stem cell transplantation (HuCNS-SC®) is a promising central nervous system (CNS) tissue repair strategy in patients with stable neurological deficits from chronic spinal cord injury (SCI). These immature human neural cells have been demonstrated to survive when transplanted in vivo, extend neural processes, form synaptic contacts, and improve functional outcomes after experimental SCI. A phase II single blind, randomized proof-of-concept study of the safety and efficacy of HuCNS-SC transplantation into the cervical spinal cord was undertaken in patients with chronic C5-7 tetraplegia, 4-24 months post-injury. ⋯ At 1 year post-transplantation, there was no evidence of additional spinal cord damage, new lesions, or syrinx formation on magnetic resonance (MR) imaging. In summary, the incremental dose escalation design established surgical safety, tolerability, and feasibility in Cohort I. Interim analysis of Cohorts I and II demonstrated a trend toward Upper Extremity Motor Score (UEMS) and Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP) motor gains in the treated participants, but at a magnitude below the required clinical efficacy threshold set by the sponsor to support further development resulting in early study termination.
-
Journal of neurotrauma · Mar 2019
Randomized Controlled TrialImpact of Low-Level Blast Exposure on Brain Function after a One-Day Tactile Training and the Ameliorating Effect of a Jugular Vein Compression Neck Collar Device.
Special Weapons and Tactics (SWAT) personnel who conduct breacher exercises are at risk for blast-related head trauma. We aimed to investigate the potential impact of low-level blast exposure during breacher training on the neural functioning of working memory and auditory network connectivity. We also aimed to evaluate the effects of a jugular vein compression collar, designed to internally mitigate slosh energy absorption, preserving neural functioning and connectivity, following blast exposure. ⋯ The elevation in fMRI activation in the non-collar group was found to correlate significantly (n = 7, r = 0.943, p = 0.001) with average peak impulse amplitude experienced during the training. In the resting-state fMRI analysis, significant pre- to post-training increase in connectivity between the auditory network and two discrete regions (left middle frontal gyrus and left superior lateral occipital/angular gyri) was found in the non-collar group, while no change was observed in the collar group. These data provided initial evidence of the impact of low-level blast on working memory and auditory network connectivity as well as the protective effect of collar on brain function following blast exposure, and is congruent with previous collar findings in sport-related traumatic brain injury.