Journal of neurotrauma
-
Journal of neurotrauma · May 2018
Rodent Neural Progenitor Cells Support Functional Recovery after Cervical Spinal Cord Contusion.
Previously, we and others have shown that rodent neural progenitor cells (NPCs) can support functional recovery after cervical and thoracic transection injuries. To extend these observations to a more clinically relevant model of spinal cord injury, we performed unilateral midcervical contusion injuries in Fischer 344 rats. Two-weeks later, E14-derived syngeneic spinal cord-derived multi-potent NPCs were implanted into the lesion cavity. ⋯ Animals that received NPC grafts exhibited significant recovery of forelimb motor function compared with the two control groups (analysis of variance p < 0.05). Thus, NPC grafts improve forelimb motor outcomes after clinically relevant cervical contusion injury. These benefits are observed when grafts are placed two weeks after injury, a time point that is more clinically practical than acute interventions, allowing time for patients to stabilize medically, simplifying enrollment in clinical trials, and enhancing predictability of spontaneous improvement in control groups.
-
Journal of neurotrauma · May 2018
Randomized Controlled Trial Multicenter StudyRho Inhibitor VX-210 in Acute Traumatic Subaxial Cervical Spinal Cord Injury: Design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) Clinical Trial.
Traumatic spinal cord injury (SCI) is associated with a lifetime of disability stemming from loss of motor, sensory, and autonomic functions; these losses, along with increased comorbid sequelae, negatively impact health outcomes and quality of life. Early decompression surgery post-SCI can enhance patient outcomes, but does not directly facilitate neural repair and regeneration. Currently, there are no U. ⋯ A subset of patients with acute traumatic cervical SCI is currently being enrolled in the United States and Canada. Medical, neurological, and functional changes are evaluated at 6 weeks and at 3, 6, and 12 months after VX-210 administration. Efficacy will be assessed by the primary outcome measure, change in upper extremity motor score at 6 months post-treatment, and by secondary outcomes that include question-based and task-based evaluations of functional recovery.
-
Journal of neurotrauma · May 2018
Parallel Evaluation of Two Potassium Channel Blockers in Restoring Conduction in Mechanical Spinal Cord Injury in Rat.
Myelin damage is a hallmark of spinal cord injury (SCI), and potassium channel blocker (PCB) is proven effective to restore axonal conduction and regain neurological function. Aiming to improve this therapy beyond the U. S. ⋯ Further, 5 mg/kg of 4-AP-3-MeOH significantly improved motor function whereas both 4-AP-3-MeOH (1 and 5 mg/kg) and, to a lesser degree, 4-AP (1 mg/kg) alleviated neuropathic pain-like behavior when applied in rats 2 weeks post-SCI. Based on these and other findings, we conclude that 4-AP-3-MeOH appears to be more advantageous over 4-AP in restoring axonal conduction because of the combination of its higher efficacy in enhancing the amplitude of compound action potential, lesser negative effect on axonal responsiveness to multiple stimuli, and wider therapeutic range in both ex vivo and in vivo application. As a result, 4-AP-3-MeOH has emerged as a strong alternative to 4-AP that can complement the effectiveness, and even partially overcome the shortcomings, of 4-AP in the treatment of neurotrauma and degenerative diseases where myelin damage is implicated.
-
Journal of neurotrauma · May 2018
Anatomical and Functional Changes to the Colonic Neuromuscular Compartment after Experimental Spinal Cord Injury.
A profound reduction in colorectal transit time accompanies spinal cord injury (SCI), yet the colonic alterations after SCI have yet to be understood fully. The loss of descending supraspinal input to lumbosacral neural circuits innervating the colon is recognized as one causal mechanism. Remodeling of the colonic enteric nervous system/smooth muscle junction in response to inflammation, however, is recognized as one factor leading to colonic dysmotility in other pathophysiological models. ⋯ Colonic cross sections immunohistochemically processed for the pan-neuronal marker HuC/D displayed a significant decrease in colonic enteric neuron density that became more pronounced at three weeks after injury. Our data suggest that post-SCI inflammation and remodeling of the enteric neuromuscular compartment accompanies SCI. These morphological changes may provoke the diminished colonic motility that occurs during this same period, possibly through the disruption of intrinsic neuromuscular control of the colon.
-
Journal of neurotrauma · Apr 2018
A Retrospective Study of Predictors of Return to Duty versus Medical Retirement in an Active Duty Military Population with Blast-Related Mild Traumatic Brain Injury.
Traumatic Brain Injury (TBI) has been described as the "signature injury" of the Global War on Terror. Explosive blast TBI has become a leading cause of injury as a result of the widespread use of improvised explosive devices in Iraq and Afghanistan. We present a retrospective cross-sectional study of patients with blast-related mild TBI (mTBI, N = 303) seen at the Intrepid Spirit Concussion Recovery Center at Naval Medical Center Camp Lejeune. ⋯ The RBANS (p = 0.003) and multiple concussions (p = 0.03) were significant terms in the logistic model, but ADC was not (p = 0.27). The area under the receiver operating characteristic curve was 0.77 (95% confidence interval 0.66-0.86). These results suggest cognitive testing and TBI history might be used to identify service members who are more likely to be retired medically from active duty.