Journal of neurotrauma
-
Journal of neurotrauma · Aug 2005
Slow, medium, or fast re-warming following post-traumatic hypothermia therapy? An ultrastructural perspective.
It was hypothesized that rapid rather than slow re-warming following traumatic brain injury (TBI) and short-term hypothermia results in secondary, ultrastructural pathology. After stretch injury to the right optic nerve, adult guinea pigs were randomly allocated to one of six experimental groups. Either (1) sham (all procedures but not stretch-injured; n = 4); injured and (2) maintained at normal temporalis core temperature (38.5 degrees C) for 8 hours (n = 6); (3) cooled rapidly to 32.5 degrees C (temporalis temperature), maintained for 4 h and re-warmed to 38.5 degrees C at 1 degrees C rise every 10 min (fast; n = 6); (4) cooled and re-warmed at 1 degrees C rise every 20 min (medium; n = 6); (5) cooled and rewarmed at 1 degrees C rise every 40 min (slow; n = 6) before being killed 8 h after injury; and (6) uninjured animals (n = 6) cooled to 32.5 degrees C for 4 h and then re-warmed at 1 degrees C every 10 min before killing 4 h later. ⋯ The number of MT was reduced to 40% of control values, NFs were increased but were not compacted after medium rate re-warming. Following slow re-warming the axonal cytoskeleton did not differ from that in control animals. It is concluded that re-warming faster than 1 degrees C every 40 min following mild post-traumatic hypothermia induces secondary axonal pathology.
-
Journal of neurotrauma · Aug 2005
Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons.
Interleukin-1 (IL-1) has many roles in the brain in addition to mediating inflammatory processes in the glia, and has also been implicated in neurodegenerative disease. Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity and mortality in young persons. We conducted a study to assess the effect of IL-1 on the TBI-induced death of hippocampal neurons. ⋯ Our findings indicate that the observed TBI-induced increases in IL-1alpha and IL-1beta occur largely through release of these cytokines from neurons and astrocytes, respectively. Intraventricular administration of antibodies to IL-1alpha and IL-1beta before TBI significantly attenuated the TBI-induced loss of hippocampal neurons. These results show that IL-1alpha and IL-1beta play important roles in the TBI-induced loss of hippocampal neurons.
-
Journal of neurotrauma · Aug 2005
Shedding of tumor necrosis factor type 1 receptor after experimental spinal cord injury.
In a number of stress conditions, the biological effects of tumor necrosis factor-alpha (TNF-alpha), such as the induction of neuronal apoptosis, are presumably attenuated by the soluble fragments of TNF receptors (sTNFRs). Within 1 h after spinal cord injury, increased synthesis and/or secretion of TNF-alpha is detectable at the injury site. However, the shedding of ectodomains of TNFRs in the traumatized spinal cord has not yet been reported. ⋯ Unlike sTNFR1, the levels of sTNFR2 in the CSF were unchanged at any time point post-ASCI. The increased shedding of TNFR1 was confirmed by Western blotting. It is concluded that the shedding of TNFR1 receptor may represent an important post-traumatic physiological response aimed at reducing the proapoptotic effect of TNF-alpha.
-
Journal of neurotrauma · Aug 2005
Cell adhesion molecule l1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury.
Previous studies have indicated that the cell adhesion molecule L1 enhances neuronal survival and neurite outgrowth. L1-mediated promotion of neurite outgrowth has been shown to occur also in an inhibitory environment not only in vitro, but also in vivo. To further investigate the effects of L1 in spinal cord injury, we transfected embryonic stem cells with a plasmid encoding the full-length mouse L1 molecule under the control of PGK promoter. ⋯ Anterogradely labeled corticospinal tract axons showed interdigitation with L1-transfected embryonic stem cells and, in contrast to non-transfected stem cells, extended into the lesion site 1 month after transplantation and, in some cases, extended beyond it. Our observations encourage the use of L1-transfected embryonic stem cells that express L1 not only at the cell surface, but also as a soluble and secreted form. Their use could condition the inhibitory environment for homophilic L1-enhanced axon regrowth not only in spinal cord regeneration, but also in other lesion paradigms.
-
Journal of neurotrauma · Jul 2005
Concurrent monitoring of cerebral electrophysiology and metabolism after traumatic brain injury: an experimental and clinical study.
Multiparameter cerebral monitoring has been widely applied in traumatic brain injury to study posttraumatic pathophysiology and to manage head-injured patients (e.g., combining O(2) and pH sensors with cerebral microdialysis). Because a comprehensive approach towards understanding injury processes will also require functional measures, we have added electrophysiology to these monitoring modalities by attaching a recording electrode to the microdialysis probe. These dual-function (microdialysis/electrophysiology) probes were placed in rats following experimental fluid percussion brain injuries, and in a series of severely head-injured human patients. ⋯ In some patients, spontaneous field potentials were observed, suggesting synchronously firing neuronal populations. In both the experimental and clinical application, the addition of the recording electrode did not appreciably affect the performance of the microdialysis probe. The results suggest that this technique provides a functional monitoring capability which cannot be obtained when electrophysiology is measured with surface or epidural EEG alone.