Journal of neurotrauma
-
Journal of neurotrauma · Jun 2004
Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway.
Alterations in glutamatergic transmission are thought to contribute to secondary neuronal damage following traumatic brain injury. Using an in vitro cell injury model, we previously demonstrated an apparent reduction in AMPA receptor desensitization and resultant potentiation of AMPA-evoked currents after stretch injury of cultured neonatal rat cortical neurons. In the present study, we sought to further characterize injury-induced enhancement of AMPA current and elucidate the mechanisms responsible for this pathological process. ⋯ The co-application of 100 microM AMPA and 20 microM thiocyanate enhanced AMPA receptor desensitization in control neurons and restored desensitization in injured neurons. The potentiation of AMPA-elicited current was prevented by the NMDA receptor antagonist D-APV (20 microM) or the CaMKII inhibitor KN93 (10 microM). These results suggest that mechanical injury initiates a biochemical cascade that involves NMDA receptor and CaMKII activation and produces a long-lasting reduction of AMPA receptor desensitization, which may contribute to the pathophysiology of traumatic brain injury.
-
Journal of neurotrauma · May 2004
Intraventricular infusion of the neurotrophic protein S100B improves cognitive recovery after fluid percussion injury in the rat.
Elevated serum S100B levels have been shown to be a predictor of poor outcome after traumatic brain injury (TBI). Experimental data, on the other hand, demonstrate a neuroprotective and neurotrophic effect of this calcium-binding protein. The purpose of this study was to examine the role of increased S100B levels on functional outcome after TBI. ⋯ The correlation of higher serum S100B levels with poor water maze performance may result from injury induced opening of the blood-brain barrier, allowing the passage of S100B into serum. Thus while higher serum levels of S100B seem to reflect the degree of blood-brain barrier opening and severity of injury, a beneficial effect of intraventricular S100B administration on long-term functional recovery after TBI has been demonstrated for the first time. The exact mechanism by which S100B exerts its neuroprotective or neurotrophic influence remains unknown and needs to be elucidated by further investigation.
-
Journal of neurotrauma · May 2004
Comparative StudyAcute subdural hematoma associated with diffuse brain injury and hypoxemia in the rat: effect of surgical evacuation of the hematoma.
The aim of this study was to assess the effect of rapid or delayed surgical evacuation on the physiological consequence and brain edema formation in a rat model of acute subdural hematoma (SDH) coupled with either diffuse brain injury (DBI) or hypoxemia. The SDH was made by an autologous blood injection, while DBI was induced using the impact acceleration model (mild, 450 g/1 m; severe, 450 g/2 m). Physiological parameters measured included intracranial pressure (ICP), mean arterial blood pressure (MABP), cerebral blood flow (CBF), and brain tissue water content. ⋯ The additional insult of hypoxemia (Series 3) resulted in a progressive ICP elevation, persistently depressed CBF, and severe brain swelling. Under this situation, the rapid evacuation exacerbated brain edema. These results have clinical implications for the management of severe traumatic SDH, especially its operative indication and timing.
-
Journal of neurotrauma · May 2004
Differential effects of the anticonvulsant topiramate on neurobehavioral and histological outcomes following traumatic brain injury in rats.
The efficacy of topiramate, a novel therapeutic agent approved for the treatment of seizure disorders, was evaluated in a model of traumatic brain injury (TBI). Adult male rats were anesthetized (sodium pentobarbital, 60 mg/kg, i.p.), subjected to lateral fluid percussion brain injury (n = 60) or sham injury (n = 47) and randomized to receive either topiramate or vehicle at 30 min (30 mg/kg, i.p.), and 8, 20 and 32 h postinjury (30 mg/kg, p.o.). In Study A, memory was evaluated using a Morris water maze at 48 h postinjury, after which brain tissue was evaluated for regional cerebral edema. ⋯ Topiramate had no effect on posttraumatic cerebral edema or histologic damage when compared to vehicle. At 48 h, topiramate treatment improved memory function in sham but not brain-injured animals, while at one month postinjury it impaired learning performance in brain-injured but not sham animals. Topiramate significantly improved composite neuroscores at 4 weeks postinjury and rotating pole performance at 1 and 4 weeks postinjury, suggesting a potentially beneficial effect on motor function following TBI.
-
Journal of neurotrauma · May 2004
Comparative StudyComparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models.
The behavioral and histological effects of the lateral fluid percussion (LFP) brain injury model were compared with the weight drop impact-acceleration model with 10 min of secondary hypoxia (WDIA + H). LFP injury resulted in significant motor deficits on the beam walk and inclined plane, and memory deficits on the radial arm maze and Morris water maze. Motor deficits following LFP remained throughout 6 weeks of behavioral testing. ⋯ Histological examination of LFP-injured brains with Fluoro-Jade staining 24 h, 48 h, and 7 days post-injury revealed degenerating neurons in the cortex, thalamus, hippocampus, caudate-putamen, brainstem, and cerebellum, with degenerating fibers tracts in the corpus callosum and other major tracts throughout the brain. Fluoro-Jade staining following WDIA+H injury revealed damage to fibers in the optic tract, lateral olfactory tract, corpus callosum, anterior commissure, caudate-putamen, brain stem, and cerebellum. While both models produce reliable and characteristic behavioral and neuronal pathologies, their differences are important to consider when choosing a brain injury model.