Journal of neuroendocrinology
-
J. Neuroendocrinol. · Feb 2021
ReviewACE2 in the second act of COVID-19 syndrome: Peptide dysregulation and possible correction with oestrogen.
Coronavirus disease 2019 (COVID-19) has become the most critical pandemic of the 21st Century and the most severe since the 1918 influenza pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects the host by binding to angiotensin-converting enzyme 2 (ACE2). ⋯ Here, we review the mechanisms by which the peptidergic substrates and products of ACE and ACE2 contribute to physiological and pathophysiological processes and hypothesise how down-regulation of ACE2 by SARS-CoV-2 cellular entry disrupts homeostasis. A better understanding of the endocrinology of the disease, in particular the neuroendocrinology of ACE2 during COVID-19, may contribute to the timely design of new therapeutic strategies, including the regulation of ACE2 itself by steroid hormones, to ameliorate the severity of COVID-19.
-
J. Neuroendocrinol. · Nov 2013
ReviewRapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins.
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. ⋯ We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
-
J. Neuroendocrinol. · Dec 2012
ReviewInteraction of sex steroid hormones and brain-derived neurotrophic factor-tyrosine kinase B signalling: relevance to schizophrenia and depression.
Sex steroid hormones and neurotrophic factors are involved in pruning and shaping the developing brain and have been implicated in the pathogenesis of neurodevelopmental disorders. Sex steroid hormones are also involved in the regulation of brain-derived neurotrophic factor expression. A review of the literature is provided on the relationship between brain-derived neurotrophic factor and sex steroid hormones, as well as the mechanisms behind this interaction, in the context of how this relationship may be involved in the development of neurodevelopmental psychiatric illnesses, such as schizophrenia and depression.
-
J. Neuroendocrinol. · Jan 2012
ReviewTranslocator protein (18 kDa) as a target for novel anxiolytics with a favourable side-effect profile.
Anxiety disorders are frequent and highly disabling diseases with considerable socio-economic impact. In the treatment of anxiety disorders, benzodiazepines (BZDs) as direct modulators of the GABA(A) receptor are used as emergency medication because of their rapid onset of action. However, BZDs act also as sedatives and rather quickly induce tolerance and abuse liability associated with withdrawal symptoms. ⋯ Also in humans, XBD173 displays antipanic activity and does not cause sedation and withdrawal symptoms after 7 days of treatment. XBD173 therefore appears to be a promising candidate for fast-acting anxiolytic drugs with less severe side-effects than BZDs. In this review, we focus on the pathophysiology of anxiety disorders and TSPO ligands as a novel pharmacological approach in the treatment of these disorders.
-
J. Neuroendocrinol. · Jul 2009
ReviewGlial cells: indispensable partners of hypothalamic magnocellular neurones.
The hypothalamo-neurohypophysial system is comprised of magnocellular neurones that synthesise the neuropeptides oxytocin or vasopressin. As neurohormones, these peptides intervene in the regulation of vital functions such as parturition, lactation, osmotic and cardiovascular regulation. The release of these peptides in the general circulation depends on the electrical activity of their parent neurones, which in turn is regulated by the activity of their afferent inputs conveying distinct information. ⋯ An important gliotransmitter is the amino acid, d-serine, which, together with glutamate, activates NMDA receptors. Once activated, NMDA receptors govern the weight of individual inputs on magnocellular neurones and thus the impact of distinct types of information on neuronal activity. As reviewed here, numerous observations show that astrocytes must be considered as key elements in the functioning of the hypothalamo-neurohypophysial system.