Artificial intelligence in medicine
-
An electroencephalogram-based (EEG-based) brain-computer-interface (BCI) provides a new communication channel between the human brain and a computer. Amongst the various available techniques, artificial neural networks (ANNs) are well established in BCI research and have numerous successful applications. However, one of the drawbacks of conventional ANNs is the lack of an explicit input optimization mechanism. In addition, results of ANN learning are usually not easily interpretable. In this paper, we have applied an ANN-based method, the genetic neural mathematic method (GNMM), to two EEG channel selection and classification problems, aiming to address the issues above. ⋯ We demonstrate that GNMM is able to perform effective channel selections/reductions, which not only reduces the difficulty of data collection, but also greatly improves the generalization of the classifier. An important step that affects the effectiveness of GNMM is the pre-processing method. In this paper, we also highlight the importance of choosing an appropriate time window position.