NMR in biomedicine
-
The present study investigated myocardial T2* heterogeneity in thalassaemia major (TM) patients by cardiac magnetic resonance (CMR), to determine whether is related to inhomogeneous iron overload distribution. A total of 230 TM patients consecutively referred to our laboratory were studied retrospectively. Three short-axis views (basal, medium and apical) of the left ventricle (LV) were obtained by multislice multiecho T2* CMR. ⋯ Among these patients, 74% showed a normal T2* global value. In conclusion, a true heterogeneity in the iron overload distribution may be present in TM patients. Heterogeneity seemingly appears in the borderline myocardial iron and stabilizes at moderate to severe iron burden.
-
In comparison to 1.5 and 3 T, MR spectroscopic imaging at 7 T benefits from signal-to-noise ratio (SNR) gain and increased spectral resolution and should enable mapping of a large number of metabolites at high spatial resolutions. However, to take full advantage of the ultra-high field strength, severe technical challenges, e.g. related to very short T(2) relaxation times and strict limitations on the maximum achievable B(1) field strength, have to be resolved. The latter results in a considerable decrease in bandwidth for conventional amplitude modulated radio frequency pulses (RF-pulses) and thus to an undesirably large chemical-shift displacement artefact. ⋯ Third order shimming is based on the accelerated projection-based automatic shimming routine (FASTERMAP) algorithm. The striking SNR and spectral resolution enable unambiguous quantification and mapping of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartatyl-glutamate (NAAG), gamma-aminobutyric acid (GABA) and glutathione (GSH). The high SNR is also the basis for highly spatially resolved metabolite mapping.