NMR in biomedicine
-
Obtaining functional information on the human lung is of tremendous interest in the characterization of lung defects and pathologies. However, pulmonary ventilation and perfusion maps usually require contrast agents and the application of electrocardiogram (ECG) triggering and breath holds to generate datasets free of motion artifacts. This work demonstrates the possibility of obtaining highly resolved perfusion-weighted and ventilation-weighted images of the human lung using proton MRI and the SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) technique. ⋯ Perfusion-weighted images corresponded well to DCE-MRI data; ventilation-weighted images offered a significantly better depiction of the lung periphery compared with standard FD. Furthermore, the SENCEFUL technique hints at a potential clinical relevance by successfully detecting a perfusion defect in the patient scan. It can be concluded that SENCEFUL enables highly resolved ventilation- and perfusion-weighted maps of the human lung to be obtained using proton MRI, and might be interesting for further clinical evaluation.
-
Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. ⋯ The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.
-
The cuprizone mouse model is well established for studying the processes of both demyelination and remyelination in the corpus callosum, and it has been utilized together with diffusion tensor imaging (DTI) to investigate myelin and axonal pathology. Although some underlying morphological mechanisms contributing to the changes in diffusion tensor (DT) metrics have been identified, the understanding of specific associations between histology and diffusion measures remains limited. Diffusional kurtosis imaging (DKI) is an extension of DTI that provides metrics of diffusional non-Gaussianity, for which an associated white matter modeling (WMM) method has been developed. ⋯ Specifically, in the rostral segment, axonal water fraction (d = 2.6; p < 0.0001), radial kurtosis (d = 2.0; p = 0.001) and mean kurtosis (d = 1.5; p = 0.005) showed the most sensitivity between groups with respect to yielding statistically significant p values and high Cohen's d values. These results demonstrate the ability of DK and WMM metrics to detect white mater changes and inflammatory processes associated with cuprizone-induced demyelination. They also validate, in part, the application of these new WMM metrics for studying neurological diseases, as well as helping to elucidate their biophysical meaning.