NMR in biomedicine
-
Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. ⋯ Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume.
-
Randomized Controlled Trial Comparative Study
Comparison of T1 relaxation times in adipose tissue of severely obese patients and healthy lean subjects measured by 1.5 T MRI.
Subcutaneous (SAT) and visceral adipose tissue (VAT) differ in composition, endocrine function and localization in the body. VAT is considered to play a role in the pathogenesis of insulin resistance, type 2 diabetes, fatty liver disease, and other obesity-related disorders. It has been shown that the amount, distribution, and (cellular) composition of adipose tissue (AT) correlate well with metabolic conditions. ⋯ Obese subjects also showed significant (p < 0.01) T1 differences between sSAT (268 ± 11 ms) and dSAT (281 ± 19 ms). More important, T1 differences in both SAT and VAT were highly significant (p < 0.001) between obese patients and healthy subjects. The results of our pilot study suggest that T1 relaxation times differ between severely obese patients and lean controls, and may potentially provide an additional means for the non-invasive assessment of AT conditions and dysfunction.
-
The accurate diagnosis of glioma subtypes is critical for appropriate treatment, but conventional histopathologic diagnosis often exhibits significant intra-observer variability and sampling error. The aim of this study was to investigate whether histogram analysis using an automatically segmented region of interest (ROI), excluding cystic or necrotic portions, could improve the differentiation between low-grade and high-grade gliomas. Thirty-two patients (nine low-grade and 23 high-grade gliomas) were included in this retrospective investigation. ⋯ We found that an ROI excluding cystic or necrotic portions was more useful for glioma grading than was an entire tumor ROI. In the case of the fifth percentile values of the normalized ADC histogram, the area under the ROC curve for the tumor ROIs excluding cystic or necrotic portions was significantly higher than that for the entire tumor ROIs (p < 0.005). The automatic segmentation of a cystic or necrotic area probably improves the ability to differentiate between high- and low-grade gliomas on an ADC map.
-
Quantitative MRI techniques, such as T2 relaxometry, have demonstrated the potential to detect changes in the tissue microstructure of the human brain with higher specificity to the underlying pathology than in conventional morphological imaging. At high to ultra-high field strengths, quantitative MR-based tissue characterization benefits from the higher signal-to-noise ratio traded for either improved resolution or reduced scan time, but is impaired by severe static (B0 ) and transmit (B1 ) field heterogeneities. The objective of this study was to derive a robust relaxometry technique for fast T2 mapping of the human brain at high to ultra-high fields, which is highly insensitive to B0 and B1 field variations. ⋯ Excellent agreement between TESS-based T2 measurements and reference single-echo spin-echo data was found in vitro and in vivo at 3 T, and T2 relaxometry based on TESS imaging was proven to be feasible and reliable in the human brain at 7 and 9.4 T. Although prominent B0 and B1 field variations occur at ultra-high fields, the T2 maps obtained show no B0 - or B1 -related degradations. In conclusion, as a result of the observed robustness, TESS T2 may emerge as a valuable measure for the early diagnosis and progression monitoring of brain diseases in high-resolution 2D acquisitions at high to ultra-high fields.