NMR in biomedicine
-
MRS of 13 C4 -labelled glutamate (13 C4 -Glu) during an infusion of a carbon-13 (13 C)-labelled substrate, such as uniformly labelled glucose ([U-13 C6 ]-Glc), provides a measure of Glc metabolism. The presented work provides a single-shot indirect 13 C detection technique to quantify the approximately 2.51 ppm 13 C4 -Glu satellite proton (1 H) peak at 9.4 T. The methodology is an optimized point-resolved spectroscopy (PRESS) sequence that minimizes signal contamination from the strongly coupled protons of N-acetylaspartate (NAA), which resonate at approximately 2.49 ppm. ⋯ The efficacy of the technique was verified on phantom solutions and on two rat brains in vivo during an infusion of [U-13 C6 ]-Glc. LCModel was employed for analysis of the in vivo spectra to quantify the 2.51 ppm 1 H 13 C4 -Glu signal to obtain Glu C4 fractional enrichment time courses during the infusions. Cramér-Rao lower bounds of about 8% were obtained for the 2.51 ppm 13 C4 -Glu 1 H satellite peak with the optimal TE combination.