NMR in biomedicine
-
Arterial spin labeling (ASL) offers MRI measurement of cerebral blood flow (CBF) in vivo, and may offer clinical diagnostic utility in populations such as those with early Alzheimer's disease (AD). In the current study, we investigated the reliability and precision of a pseudo-continuous ASL (pcASL) sequence that was performed two or three times within one hour on eight young normal control subjects, and 14 elderly subjects including 11 with normal cognition, one with AD and two with Mild Cognitive Impairment (MCI). Six of these elderly subjects including one AD, two MCIs and three controls also received (15)O-water positron emission tomography (PET) scans 2 h before their pcASL MR scan. ⋯ Significant negative correlation was found between age and the gray/white matter perfusion ratio (r = -0.62, p < 0.002). The AD and MCI patients showed the lowest gray/white matter perfusion ratio among all the subjects. The data suggest that pcASL provides a reliable whole brain CBF measurement in young and elderly adults whose results converge with those obtained with the traditional (15)O-water PET perfusion imaging method. pcASL perfusion MRI offers an alternative method for non-invasive in vivo examination of early pathophysiological changes in AD.
-
Evidence suggests that mitochondria undergo functional and morphological changes with age. This study aimed to investigate the relationship of brain energy metabolism to healthy aging by assessing tissue specific differences in metabolites observable by phosphorus ((31)P) MRS. (31)P MRSI at 4 Tesla (T) was performed on 34 volunteers, aged 21-84, screened to exclude serious medical and psychiatric diagnoses. Linear mixed effects models were used to analyze the effects of age on phosphorus metabolite concentrations, intracellular magnesium and pH estimates in brain tissue. ⋯ This study reports the effects of healthy aging on brain chemistry in the gray matter versus white matter using (31)P MRS measures of high energy phosphates, pH and membrane metabolism. Increased PCr, increased beta NTP (reflecting ATP) and reduced pH may reflect altered energy production with healthy aging. Unlike some previous studies of aging and brain chemistry, this study examined healthy, non-demented and psychiatrically stable older adults and specifically analyzed gray-white matter differences in brain metabolism.
-
Damage to specific white matter tracts within the spinal cord can often result in the particular neurological syndromes that characterize myelopathies such as traumatic spinal cord injury. Noninvasive visualization of these tracts with imaging techniques that are sensitive to microstructural integrity is an important clinical goal. Diffusion tensor imaging (DTI)- and magnetization transfer (MT)-derived quantities have shown promise in assessing tissue health in the central nervous system. ⋯ Cross-sectional means and standard deviations of these measures in the lateral and dorsal columns were as follows: lambda(||): 2.13 +/- 0.14 and 2.14 +/- 0.11 microm(2)/ms; lambda(perpendicular): 0.67 +/- 0.16 and 0.61 +/- 0.09 microm(2)/ms; MD: 1.15 +/- 0.15 and 1.12 +/- 0.08 microm(2)/ms; FA: 0.68 +/- 0.06 and 0.68 +/- 0.05; MTCSF: 0.52 +/- 0.05 and 0.50 +/- 0.05. We examined the variability and interrater and test-retest reliability for each metric. These column-specific MR measurements are expected to enhance understanding of the intimate structure-function relationship in the cervical spinal cord and may be useful for the assessment of disease progression.
-
The acquisition of magnetic resonance spectroscopy (MRS) signals by multiple receiver coils can improve the signal-to-noise ratio (SNR) or alternatively can reduce the scan time maintaining a reliable SNR. However, using phased array coils in MRS studies requires efficient data processing and data combination techniques in order to exploit the sensitivity improvement of the phased array coil acquisition method. This paper describes a novel method for the combination of MRS signals acquired by phased array coils, even in presence of correlated noise between the acquisition channels. ⋯ Performance evaluation of the proposed method is carried out on simulated (1)H-MRS signals and experimental results are obtained on phantom (1)H-MR spectra using a commercially available 8-element phased array coil. Noise correlations between elements were generally low due to the optimal coil design, leading to a fair SNR gain (about 0.5%) in the center of the field of view (FOV). A greater SNR improvement was found in the peripheral FOV regions.
-
A simple, clinically viable technique utilizing PRESS and strong coupling properties is presented for discrimination of coupled brain metabolites. The method relies on signal variation due to alteration of inter-echo timings (PRESS asymmetry) while maintaining a constant total echo time. Spin response of singlets and weakly coupled spins is unchanged due to PRESS asymmetry, allowing difference spectroscopy to detect unobstructed strongly coupled resonances. ⋯ To extend the treatment to other field strengths and metabolites, an analytical approximation based on a strongly coupled AB system was used to model individual spin groups. Subtraction spectroscopy yields for different combinations of coupling parameters were calculated for the detection of various strongly coupled metabolites at common clinical field strengths. The approximation also predicts adequate glutamate/glutamine discrimination at 3.0 T using the difference spectroscopy method.