Neuroreport
-
Randomized Controlled Trial
Intensity-dependent effects of transcranial pulsed current stimulation on interhemispheric connectivity: a high-resolution qEEG, sham-controlled study.
Defining optimal parameters for stimulation is a critical step in the development of noninvasive neuromodulation techniques. Transcranial pulsed current stimulation (tPCS) is emerging as another option in the field of neuromodulation; however, little is known about its mechanistic effects on electrical brain activity and how it can modulate its oscillatory patterns. The aim of this study was to identify the current intensity needed to exert an effect on quantitative electroencephalogram (qEEG) measurements. ⋯ There were no group differences for adverse effects and participants could not guess correctly whether they received active versus sham stimulation. On the basis of our results, we conclude that tPCS is associated with an intensity-dependent facilitatory effect on interhemispheric connectivity. These results can guide future tPCS applications and will define its role as a neuromodulatory technique in the field.
-
The prognostic value of the N-amino terminal fragment of the prohormone brain natriuretic peptide (NT-proBNP) in acute ischemic stroke (AIS) is uncertain. We sought to determine whether NT-proBNP levels were associated with functional outcomes after AIS. From August 2012 to October 2013, consecutive first-ever AIS patients admitted to the Department of Emergency of the First Affiliated Hospital of Xinxiang Medical University, China, were included in this study. ⋯ Plasma levels of NT-proBNP in patients with an unfavorable outcome were significantly higher than those in patients with a favorable outcome [3432 (interquartile range, 1100-54991) vs. 978 (interquartile range, 123-1705) pg/ml; P=0.000]. In multivariate analyses, after adjusting for all other significant outcome predictors, the NT-proBNP level that remained can be seen as an independent unfavorable outcome predictor, with an adjusted odds ratios of 4.14 (95% confidence interval, 2.72-7.99; P=0.000). Our results show that plasma NT-proBNP levels were significantly elevated in patients with an unfavorable outcome and might be of clinical importance as a supplementary tool for the assessment of functional outcomes in patients with AIS.
-
In an attempt to investigate the underlying mechanisms of cancer-induced bone pain, we investigated the presence of acid-sensing ion channel 3 (ASIC3) in dorsal root ganglia (DRG) neurons in an animal model of bone cancer pain. Forty-five female Sprague-Dawley rats were randomized into three groups: sham-operation group (sham), cancer-bearing animals killed after 7 days (C7), and cancer-bearing animals killed after 14 days (C14). After establishment of the bone cancer pain model, pain-related behavioral tests were performed to determine the paw withdrawal threshold of mechanical allodynia and thermal hyperalgesia, respectively. ⋯ Double-labeled immunofluorescence showed that ASIC3 and isolectin-B4 (IB4)-colocalized small DRG neurons in the C14 group were more than that in the sham group. Furthermore, we also found that there were more ASIC3 and neurofilament 200 (NF200)-colocalized DRG neurons in the C14 group than in the sham group. The upregulation of mRNA and protein levels of ASIC3 suggested its potential involvement in the development and maintenance of cancer-induced bone pain.
-
Opioid-induced hyperalgesia (OIH) is characterized by nociceptive sensitization caused by the cessation of chronic opioid use. OIH can limit the clinical use of opioid analgesics and complicate withdrawal from opioid addiction. In this study, we investigated the effects of Re, Rg1, and Rb1 ginsenosides, the bioactive components of ginseng, on OIH. ⋯ However, the Rg1 and Rb1 ginsenosides failed to prevent OIH in either test. Furthermore, Rg1 showed a tendency to aggravate OIH in the acetic acid-induced writhing test. Our data suggested that the ginsenoside Re, but not Rg1 or Rb1, may contribute toward reversal of OIH.
-
Loss of upper arm strength after stroke is a leading cause of disability. Strategies that can enhance the benefits of rehabilitative training could improve motor function after stroke. Recent studies in a rat model of ischemic stroke have demonstrated that vagus nerve stimulation (VNS) paired with rehabilitative training substantially improves recovery of forelimb strength compared with extensive rehabilitative training without VNS. ⋯ Significantly less recovery also occurred when several-fold more VNS was delivered during rehabilitative training. Both delayed and additional VNS confer moderately improved recovery compared with extensive rehabilitative training without VNS, but fail to enhance recovery to the same degree as VNS that is timed to occur with successful movements. These findings confirm that VNS paired with rehabilitative training holds promise for restoring forelimb strength poststroke and indicate that both the timing and the amount of VNS should be optimized to maximize therapeutic benefits.