Current biology : CB
-
Current biology : CB · Mar 2014
Automatic decoding of facial movements reveals deceptive pain expressions.
In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1-3]. Two motor pathways control facial movement [4-7]: a subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions, and a cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. ⋯ However, a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system's superiority is attributable to its ability to differentiate the dynamics of genuine expressions from faked expressions. Thus, by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling.
-
Current biology : CB · Mar 2014
SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission.
Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss-null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that SSS may regulate additional molecules to influence sleep. ⋯ Together, our data point to an evolutionarily conserved, bifunctional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep.