Physiological research
-
Neurogenic pulmonary edema is a life-threatening complication, known for almost 100 years, but its etiopathogenesis is still not completely understood. This review summarizes current knowledge about the etiology and pathophysiology of neurogenic pulmonary edema. The roles of systemic sympathetic discharge, central nervous system trigger zones, intracranial pressure, inflammation and anesthesia in the etiopathogenesis of neurogenic pulmonary edema are considered in detail. The management of the patient and experimental models of neurogenic pulmonary edema are also discussed.
-
Physiological research · Jan 2008
Increased angiotensinogen production in epicardial adipose tissue during cardiac surgery: possible role in a postoperative insulin resistance.
Critical illness induces among other events production of proinflammatory cytokines that in turn interfere with insulin signaling cascade and induce insulin resistance on a postreceptor level. Recently, local renin-angiotensin system of adipose tissue has been suggested as a possible contributor to the development of insulin resistance in patients with obesity. The aim of our study was to determine local changes of the renin-angiotensin system of subcutaneous and epicardial adipose tissue during a major cardiac surgery, which may serve as a model of an acute stress potentially affecting endocrine function of adipose tissue. ⋯ Expression of angiotensinogen mRNA significantly increased in epicardial adipose tissue at the end of surgery relative to baseline but remained unchanged in subcutaneous adipose tissue. Fat expression of angiotensin-converting enzyme and type 1 receptor for angiotensin II were not affected by surgery. Our study suggests that increased angiotensinogen production in epicardial adipose tissue may contribute to the development of postoperative insulin resistance.
-
Physiological research · Jan 2008
Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin.
The rationale for the topical application of capsaicin and other vanilloids in the treatment of pain is that such compounds selectively excite and subsequently desensitize nociceptive neurons. This desensitization is triggered by the activation of vanilloid receptors (TRPV1), which leads to an elevation in intracellular free Ca2+ levels. Depending on the vanilloid concentration and duration of exposure, the Ca2+ influx via TRPV1 desensitizes the channels themselves, which may represent not only a feedback mechanism protecting the cell from toxic Ca2+ overload, but also likely contributes to the analgesic effects of capsaicin. ⋯ In view of the polymodal nature of TRPV1, we illustrate how the channels behave in their desensitized state when activated by other stimuli such as noxious heat or depolarizing voltages. We also show that the desensitized channel can be strongly reactivated by capsaicin at concentrations higher than those previously used to desensitize it. We provide a possible explanation for a high incidence of adverse effects of topical capsaicin and point to a need for more accurate clinical criteria for employing it as a reliable remedy.
-
Polymorphic CYP2D6 is the enzyme that activates the opioid analgesic tramadol by O-demethylation to its active metabolite O-demethyltramadol (M1). Our objective was to determine the opioid effects measured by pupillary response to tramadol of CYP2D6 genotyped volunteers in relation to the disposition of tramadol and M1 in plasma. Tramadol displayed phenotypic pharmacokinetics and it was possible to identify poor metabolizers (PM) with >99% confidence from the metabolic ratio (MR) in a single blood sample taken between 2.5 and 24 h post-dose. ⋯ The strongest correlations were for the single-point metabolic ratios at all sampling intervals versus the effects, with rs ranging from 0.85 to 0.89 (p<0.01). It is concluded that the concept of dual opioid/non-opioid action of the drug, though considerably stronger in EMs, is valid for both EM and PM subjects. This is the theoretical basis for the frequent use and satisfactory efficacy of tramadol in clinical practice when given to genetically non-selected population.