Physiological research
-
Physiological research · Jan 2009
Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart: involvement of mitochondrial K(ATP) channels and reactive oxygen species.
Ischemic preconditioning (I-PC) induced by brief episodes of ischemia and reperfusion (I/R) protects the heart against sustained I/R. Although activation of mitochondrial K(ATP) channels (mitoK(ATP)) interacting with reactive oxygen species (ROS) has been proposed as a key event in this process, their role in the antiarrhythmic effect is not clear. This study was designed: 1) to investigate the involvement of mito K(ATP) opening in the effect of I-PC (1 cycle of I/R, 5 min each) on ventricular arrhythmias during test ischemia (TI, 30-min LAD coronary artery occlusion) in Langendorff-perfused rat hearts and subsequent postischemic contractile dysfunction, and 2) to characterize potential mechanisms of protection conferred by I-PC and pharmacological PC induced by mito K(ATP) opener diazoxide (DZX), with particular regards to the modulation of ROS generation. ⋯ On the other hand, I-PC and DZX themselves moderately enhanced ROS generation, prior to TI. Bracketing of I-PC with 5-HD suppressed both, ROS production during PC and its cardioprotective effect. In conclusion, potential mechanisms of protection conferred by mito K(ATP) opening in the rat heart might involve a temporal increase in ROS production in the preconditioning phase triggering changes in the pro/antioxidant balance in the myocardium and attenuating ROS production during subsequent prolonged ischemia.
-
Neurogenic pulmonary edema is a life-threatening complication, known for almost 100 years, but its etiopathogenesis is still not completely understood. This review summarizes current knowledge about the etiology and pathophysiology of neurogenic pulmonary edema. The roles of systemic sympathetic discharge, central nervous system trigger zones, intracranial pressure, inflammation and anesthesia in the etiopathogenesis of neurogenic pulmonary edema are considered in detail. The management of the patient and experimental models of neurogenic pulmonary edema are also discussed.
-
Physiological research · Jan 2008
Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin.
The rationale for the topical application of capsaicin and other vanilloids in the treatment of pain is that such compounds selectively excite and subsequently desensitize nociceptive neurons. This desensitization is triggered by the activation of vanilloid receptors (TRPV1), which leads to an elevation in intracellular free Ca2+ levels. Depending on the vanilloid concentration and duration of exposure, the Ca2+ influx via TRPV1 desensitizes the channels themselves, which may represent not only a feedback mechanism protecting the cell from toxic Ca2+ overload, but also likely contributes to the analgesic effects of capsaicin. ⋯ In view of the polymodal nature of TRPV1, we illustrate how the channels behave in their desensitized state when activated by other stimuli such as noxious heat or depolarizing voltages. We also show that the desensitized channel can be strongly reactivated by capsaicin at concentrations higher than those previously used to desensitize it. We provide a possible explanation for a high incidence of adverse effects of topical capsaicin and point to a need for more accurate clinical criteria for employing it as a reliable remedy.
-
Physiological research · Jan 2008
Increased angiotensinogen production in epicardial adipose tissue during cardiac surgery: possible role in a postoperative insulin resistance.
Critical illness induces among other events production of proinflammatory cytokines that in turn interfere with insulin signaling cascade and induce insulin resistance on a postreceptor level. Recently, local renin-angiotensin system of adipose tissue has been suggested as a possible contributor to the development of insulin resistance in patients with obesity. The aim of our study was to determine local changes of the renin-angiotensin system of subcutaneous and epicardial adipose tissue during a major cardiac surgery, which may serve as a model of an acute stress potentially affecting endocrine function of adipose tissue. ⋯ Expression of angiotensinogen mRNA significantly increased in epicardial adipose tissue at the end of surgery relative to baseline but remained unchanged in subcutaneous adipose tissue. Fat expression of angiotensin-converting enzyme and type 1 receptor for angiotensin II were not affected by surgery. Our study suggests that increased angiotensinogen production in epicardial adipose tissue may contribute to the development of postoperative insulin resistance.
-
Physiological research · Jan 2007
Comparative StudySalivary cortisol in low dose (1 microg) ACTH test in healthy women: comparison with serum cortisol.
To date, a single report has appeared on the use of salivary cortisol for adrenal function testing with a low dose ACTH, although 1 microg has become preferred as a more physiological stimulus than the commonly used 250 microg ACTH test. Our present study was aimed to obtain physiological data on changes of free salivary cortisol after 1 microg ACTH stimulation. This approach was compared with the common method based on the changes of total serum cortisol. ⋯ The values of salivary cortisol displayed very little interindividual variability (p<0.04) in contrast to total serum cortisol values (p<0.0001) A comparison of areas under the curve (AUC) related to initial values indicated significantly higher AUC values for salivary cortisol than for total serum cortisol (1.89+/-0.88 vs. 1.22+/-0.19, p<0.01). Correlation analysis of serum and salivary cortisol levels showed a borderline relationship between basal levels (r=0.5183, p=0.0525); correlations after stimulation were not significant. Low-dose ACTH administration appeared as a sufficient stimulus for increasing salivary cortisol to a range considered as a normal adrenal functional reserve.