Methods in molecular biology
-
Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires the definition of patients, interventions, controls, and outcomes. ⋯ The hierarchy of evidence for clinical decision making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.
-
This chapter posits that cancer is a complex and multifactorial process as demonstrated by the expression and production of key endocrine and steroid hormones that intermesh with lifestyle factors (physical activity, body size, and diet) in combination to heighten cancer risk. Excess weight has been associated with increased mortality from all cancers combined and for cancers of several specific sites. The prevalence of obesity has reached epidemic levels in many parts of the world; more than 1 billion adults are overweight with a body mass index (BMI) exceeding 25. ⋯ A reductionist approach is not sufficient for the basic biological mechanisms underlying the effect of diet and physical activity on cancer. The joint association between energy balance and cancer risk are hypothesized to share the same underlying mechanisms, the amplification of chemical mediators that modulate cancer risk depending on the responsiveness to those hormones to the target tissue of interest. Disentangling the connection between obesity, the insulin-IGF axis, endogenous hormones, inflammatory markers, and their molecular interaction is vital.
-
The specific causes of prostate cancer are not known. However, multiple etiologic factors, including genetic profile, metabolism of steroid hormones, nutrition, chronic inflammation, family history of prostate cancer, and environmental exposures are thought to play significant roles. Variations in exposure to these risk factors may explain interindividual differences in prostate cancer risk. ⋯ Numerous single nucleotide polymorphisms (SNPs) in DNA repair genes have been found, and studies of these SNPs and prostate cancer risk are critical to understanding the response of prostate cells to DNA damage. A few SNPs in DNA repair genes are associated with significantly increased risk of prostate cancer; however, in most cases, the effects are moderate and often depend upon interactions among the risk alleles of several genes in a pathway or with other environmental risk factors. This report reviews the published epidemiologic literature on the association of SNPs in genes involved in DNA repair pathways and prostate cancer risk.
-
Mouse models that mimic human diseases are important tools for investigating underlying mechanisms in many disease states. Although the demand for these models is high, there are few schools or courses available for surgeons to obtain the necessary skills. Researchers are usually exposed to brief descriptions of the procedures in scientific journals, which they then attempt to reproduce by trial and error. ⋯ It guides the reader through the entire procedure, from the preparation of the animal for surgery until its full recovery, and includes a list of all necessary tools and devices. Due consideration has been given to the pitfalls and possible complications in the course of surgery. Adhering to our recommendations should improve reproducibility of the models and bring the number of the animal subjects to the minimum.
-
Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.