Methods in molecular biology
-
A discrete trials procedure involves splitting up a self-administration session so that there are multiple distinct trials and inter-trial-intervals. This schedule is well suited to be used over 24 h periods which allows insight into diurnal variability in self-administration behavior. DT is also well suited for investigations using pretreatments for increasing or decreasing both high and low probability behavior.
-
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. ⋯ Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.
-
Central neuropathic pain is associated with many disease states including multiple sclerosis, stroke, and spinal cord injury, and is poorly managed. One type of central neuropathic pain that is particularly debilitating and challenging to treat is pain that occurs below the level of injury (below-level pain). The study of central neuropathic pain is commonly performed using animal models of stroke and spinal cord injury. ⋯ The second was developed to accommodate intrathecal application of pharmacological manipulations. This model provides an additional means by which to investigate central pain states associated with spinal cord injury, including below-level pain. Finally, a brief discussion of at-level pain measurement is described as it has been suggested in the literature that the mechanisms underlying below- and at-level pain are different.
-
A lumbosacral ventral root avulsion injury and repair model for studies of neuropathic pain in rats.
Neuropathic pain may develop after a variety of injuries to peripheral nerves and roots. Most injury models have included a direct injury to primary afferent fibers or neurons. ⋯ Interestingly, an acute replantation of the avulsed ventral roots into the spinal cord results in amelioration of the neuropathic pain. A detailed description of this injury and repair model is provided.
-
After the publication of the First Edition of this book in the series of Methods in Molecular Medicine (volume 99 in the series) in 2004, pain research continues its rapid acceleration until 2009, during which it experienced a plateau of growth that likely resulted from the economic downturn started in 2008 (Fig. 1.1). This rapid growth in pain research could be the driving force for an impressive 66% increase in new randomized, double-blind, placebo-control trials for neuropathic pain medications in the past 5 years compared with the last four decades. Unfortunately, little improvement in pain medications has been obtained [1] due to primarily our limited understanding of mechanisms mediating different pain states, especially that for chronic pain. ⋯ It is estimated that the continuous increase in percentage of patients suffering from chronic pain (pain conditions lasting more than 6 months) arranges from 11 to 47% between 40 and 75 years of age [2], which will inevitably and continually increase the demand for better pain medications. Second, the cost of pain conditions to our society is high, estimated $55 billion per year in loss of productivity from full-time workers alone [3], so better pain management can significantly help economic growth and stability. Third, the swift advancement in technologies and our better understanding of sensory circuitries and pain pathways serves as a driving force for timely drug discovery research and development at an unprecedented pace to meet the demand for better pain medications.