Methods in molecular biology
-
Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. ⋯ MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats.
-
Traumatic brain injury (TBI) is the leading cause of death and disability for people under 45 years of age. Clinical TBI is often the result of disparate forces resulting in heterogeneous injuries. Preclinical modeling of TBI is a vital tool for studying the complex cascade of metabolic, cellular, and molecular post-TBI events collectively termed secondary injury. ⋯ This chapter details the most widely used models of preclinical TBI, including the controlled cortical impact, fluid percussion, blast, and closed head models. Each of these models replicates particular critical aspects of clinical TBI. Prior to selecting a preclinical TBI model, it is important to address what aspect of human TBI is being sought to evaluate.
-
Blast-induced neurotrauma (BINT) has increased in incidence over the past decades and can result in cognitive issues that have debilitating consequences. The exact primary and secondary mechanisms of injury have not been elucidated and appearance of cellular injury can vary based on many factors, such as blast overpressure magnitude and duration. Many methodologies to study blast neurotrauma have been employed, ranging from open-field explosives to experimental shock tubes for producing free-field blast waves. ⋯ While cellular injury mechanisms have been identified following blast exposure, the various experimental models present both concurrent and conflicting results. Furthermore, the temporal response and progression of pathology after blast exposure have yet to be detailed and remain unclear due to limited resemblance of methodologies. This chapter summarizes the current state of blast neuropathology and emphasizes the need for a standardized preclinical model of blast neurotrauma.
-
Traumatic brain injury (TBI) has been named the most complex disease in the most complex organ of the body. It is the most common cause of death and disability in the Western world in people <40 years old and survivors commonly suffer from persisting cognitive deficits, impaired motor function, depression and personality changes. TBI may vary in severity from uniformly fatal to mild injuries with rapidly resolving symptoms and without doubt, it is a markedly heterogeneous disease. ⋯ Since TBI is not one disease, refined animal models must take into account the clinical features and complexity of human TBI. To enhance the possibility of establishing preclinical efficacy of a novel treatment, the preclinical use of several different experimental models is encouraged as well as varying the species, gender, and age of the animal. In this chapter, the methods, limitations, and challenges of the CCI and FPI models of TBI used in rodents are described.
-
Recent military combat has heightened awareness to the complexity of blast-related traumatic brain injuries (bTBI). Experiments using animal, cadaver, or biofidelic physical models remain the primary measures to investigate injury biomechanics as well as validate computational simulations, medical diagnostics and therapies, or protection technologies. ⋯ It is recommended that the blast injury research community converge on a consistent set of experimental procedures and reporting of blast test conditions. This chapter describes the blast conditions which can be recreated within a laboratory setting and methodology for testing in vivo models within the appropriate environment.