Methods in molecular biology
-
Advances in mass spectrometric instrumentation in the past 15 years have resulted in an explosion in the raw data yield from typical phosphoproteomics workflows. This poses the challenge of confidently identifying peptide sequences, localizing phosphosites to proteins and quantifying these from the vast amounts of raw data. This task is tackled by computational tools implementing algorithms that match the experimental data to databases, providing the user with lists for downstream analysis. ⋯ Equally critical for generating highly confident output datasets is the application of sound statistical criteria to limit the inclusion of incorrect peptide identifications from database searches. Additionally, careful filtering and use of appropriate statistical tests on the output datasets affects the quality of all downstream analyses and interpretation of the data. Our considerations and general practices on these aspects of phosphoproteomics data processing are presented here.
-
In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies. Animal models provide unmitigated access to histological samples, which provide a "direct measure" of damage. However, even with unconstrained access to tissue morphology and biochemistry assays, the findings typically do not account for loss of muscle function. ⋯ The majority of animal models testing contractile force have been limited to the muscle groups moving the ankle, with advantages and disadvantages depending on the equipment. Here, we describe in vivo methods to measure torque, to produce a reliable muscle injury, and to follow muscle function within the same animal over time. We also describe in vivo methods to measure tension in the leg and thigh muscles.
-
The bioluminescent resonance energy transfer (BRET) assay has been extensively used in cell-based and in vivo imaging systems for detecting protein-protein interactions in the native environment of living cells. These protein-protein interactions are essential for the functional response of many signaling pathways to environmental chemicals. ⋯ Here we review the construction of BRET fusion proteins, describe the BRET methodology, and outline strategies to overcome obstacles that may arise. Furthermore, we describe the advantage of BRET over other resonance energy transfer methods for monitoring protein-protein interactions.
-
Application of bioluminescence resonance energy transfer (BRET) assay has been of special value in measuring dynamic events such as protein-protein interactions (PPIs) in vitro or in vivo. It was only in the late 1990s the BRET assay using RLuc-YFP was introduced for biological research showing its use in determining interaction of two proteins involved in circadian rhythm. Several inherent attributes such as rapid and fairly sensitive ratiometric measurements, assessment of PPI irrespective of protein location in cellular compartment, and cost-effectiveness consenting to high-throughput assay development make BRET a popular genetic reporter-based assay for PPI studies. ⋯ In recent years, BRET-related research has become significantly versatile in the assay format and its applicability by adopting the assay on multiple detection devices such as small-animal optical imaging platform or bioluminescence microscope. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular optical imaging applications based on BRET assays have broadened its scope for screening of pharmacological compounds by unifying in vitro, live cell, and in vivo animal/plant measurement all on one platform. Taking examples from the literature, this chapter contributes to in-depth methodological details on how to perform in vitro and in vivo BRET experiments, and illustrates its advantages as a single-format assay.
-
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. ⋯ Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI.