Methods in molecular biology
-
Reversible protein phosphorylation is a key regulatory posttranslational modification that plays a significant role in major cellular signaling processes. Phosphorylation events can be systematically identified, quantified, and localized on protein sequence using publicly available bioinformatic tools. Here we present the software tools commonly used by the phosphoproteomics community, discuss their underlying principles of operation, and provide a protocol for large-scale phosphoproteome data analysis using the MaxQuant software suite.
-
Animal models of traumatic brain injury (TBI) provide important tools for studying the pathobiology of brain trauma and for evaluating therapeutic or diagnostic targets. Incorporation of additional insults such as hemorrhagic shock (HS) and/or hypoxemia (HX) into these models more closely recreates clinical scenarios as TBI often occurs in conjunction with these systemic insults (i.e., polytrauma). ⋯ The physiological, histological, and behavioral aspects of this animal model have been characterized and have demonstrated exacerbating effects of systemic insults on penetrating TBI. As such, this model may facilitate the use of simultaneous assessments of multiple mechanisms and provide a platform for testing novel diagnostic and therapeutic targets.
-
Phosphoproteomics relies on methods for efficient purification and sequencing of phosphopeptides from highly complex biological systems, especially when using low amounts of starting material. Current methods for phosphopeptide enrichment, e.g., Immobilized Metal ion Affinity Chromatography and titanium dioxide chromatography provide varying degrees of selectivity and specificity for phosphopeptide enrichment. ⋯ The method relies on the initial enrichment and separation of mono- and multi-phosphorylated peptides using Immobilized Metal ion Affinity Chromatography and a subsequent enrichment of the mono-phosphorylated peptides using titanium dioxide chromatography. The two separate phosphopeptide fractions are then subsequently analyzed by mass spectrometric methods optimized for mono-phosphorylated and multi-phosphorylated peptides, respectively, resulting in improved identification of especially multi-phosphorylated peptides from a minimum amount of starting material.
-
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is a gas-phase separation technique which, when coupled with liquid chromatography tandem mass spectrometry, offers benefits for analysis of complex proteomics samples such as those encountered in phosphoproteomics experiments. Results from LC-FAIMS-MS/MS are typically complementary, in terms of proteome coverage and isomer identification, to those obtained by use of solution-phase separation methods, such as prefractionation with strong cation-exchange chromatography. Here, we describe the protocol for large-scale phosphorylation analysis by LC-FAIMS-MS/MS.
-
Obtaining high phosphoproteome coverage requires specific enrichment of phosphorylated peptides from the often extremely complex peptide mixtures generated by proteolytic digestion of biological samples, as well as extensive chromatographic fractionation prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Due to the sample loss resulting from fractionation, this procedure is mainly performed when large quantities of sample are available. To make large-scale phosphoproteomics applicable to smaller amounts of protein we have recently combined highly specific TiO2-based phosphopeptide enrichment with sequential elution from immobilized metal affinity chromatography (SIMAC) for fractionation of mono- and multi-phosphorylated peptides prior to capillary scale hydrophilic interaction liquid chromatography (HILIC) based fractionation of monophosphorylated peptides. In the following protocol we describe the procedure step by step to allow for comprehensive coverage of the phosphoproteome utilizing only a few hundred micrograms of protein.