Methods in molecular biology
-
Traditional bottom-up mass spectrometry-based proteomics relies on the use of an enzyme, often trypsin, to generate small peptides (typically < 25 amino acids long). In top-down proteomics, proteins remain intact and are directly measured within the mass spectrometer. ⋯ In this chapter, we will show the analysis of intact protein spectra through deconvolution, deisotoping, and searching with ProSight Lite, a free, vendor-agnostic tool for the analysis of top-down mass spectrometry data. We will illustrate with two examples of intact protein fragmentation spectra and discuss the iterative use of the software to characterize proteoforms and discover the sites of post-translational modifications.
-
High-throughput proteomics studies generate large amounts of data. Biological interpretation of these large scale datasets is often challenging. ⋯ In this chapter, we describe various analyses that can be performed and bioinformatics tools and resources that enable users to do the analyses. Many Web-based and stand-alone tools are relatively user-friendly and can be used by most biologists without significant assistance.
-
The protocol herein describes a robust and proven method for the measurement of pseudokinase-ligand interaction using a fluorescence-based thermal shift assay (TSA). Pseudokinases are kinase-like proteins that have recently emerged as crucial regulatory modules of signal transduction pathways and may well represent a novel class of drug targets. However, unlike kinases, the regulatory activity of pseudokinases is mainly conferred through protein-protein interactions. ⋯ Ligand binding to a protein is known to increase its thermal stability, which is reflected by a shift between the thermal denaturation curves of the unliganded protein and the liganded protein. Here, we illustrate the utility of the method with the pseudokinases, ErbB3/HER3, ILK, ROP5Bi, JAK1, JAK2, TYK2, MLKL, STRAD, TRIB1, VRK3, and ROR1. This method can also be used to determine optimal buffer conditions that may increase protein stability and can be tailored to other protein families.
-
The smallpox vaccine based on the vaccinia virus was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one to two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is an attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. MVA can encode one or more foreign antigens and thus can function as a multivalent vaccine. ⋯ Many clinical trials of these new vaccines have been conducted, and the safety of MVA is now well documented. Immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate. In this chapter, we provide protocols for generation, isolation, amplification, and purification of recombinant MVA for preclinical and clinical evaluation.
-
Ebolaviruses cause severe, often fatal hemorrhagic fever in Central, East, and West Africa. Until recently, they have been viewed as rare but highly pathogenic infections with regional, but limited, global public health impact. ⋯ We also describe the current animal models used in ebolavirus research, detailing each model's unique strengths and weaknesses. We focus on Ebola virus representing the type species Zaire ebolavirus of the genus Ebolavirus, as most work relates to this pathogen.