Methods in molecular biology
-
Normal cellular functioning is maintained by macromolecular machines that control both core and specialized molecular tasks. These machines are in large part multi-subunit protein complexes that undergo regulation at multiple levels, from expression of requisite components to a vast array of post-translational modifications (PTMs). ⋯ Here we provide a framework for systematically studying these PTMs in the context of global protein-protein interaction networks. This analytical framework allows insight into which functions specific PTMs tend to cluster in, and furthermore which complexes either single or multiple PTM signaling pathways converge on.
-
Protein post-translational modification (PTM) is an essential cellular regulatory mechanism, and disruptions in PTM have been implicated in disease. PTMs are an active area of study in many fields, leading to a wealth of PTM information in the scientific literature. ⋯ This chapter describes the use of iPTMnet ( http://proteininformationresource.org/iPTMnet/ ), a resource that integrates PTM information from text mining, curated databases, and ontologies and provides visualization tools for exploring PTM networks, PTM crosstalk, and PTM conservation across species. We present several PTM-related queries and demonstrate how they can be addressed using iPTMnet.
-
Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs. Here, we describe the systemic delivery of a cocktail of PMOs to skip multiple exons in dystrophic dogs and the evaluation of the efficacies and toxicity in vivo.
-
Interstitial lung disease (ILD) comprises a large number of chronic lung disease characterized by varying degrees of inflammation and fibrosis. Mostly they are idiopathic including idiopathic pulmonary fibrosis (IPF), which is a specific disorder characterized by progressive fibrosis leading commonly to end-stage lung disease, respiratory failure, and fatal outcome. IPF and many of these fibrotic ILDs lack effective therapy despite recent approval of two drugs to slow progression in certain IPF patients. ⋯ Historically, among the first to be developed and used widely is the bleomycin model, which is the best-characterized and currently most extensively used animal model due to its ability to reproduce many aspects of IPF and other fibrotic ILDs, good reproducibility, and ease of induction. Studies using the bleomycin model have identified many of the cellular and molecular mechanisms now recognized as being important in pathogenesis of IPF and other fibrotic ILDs, as well as novel therapies for these diseases, including two recent drugs approved for treatment of IPF. This chapter will describe commonly used techniques for induction of the model by endotracheal administration of bleomycin through surgical and nonsurgical (transoral instillation).
-
Phosphorylation is among the most important post-translational modifications of proteins and has numerous regulatory functions across all domains of life. However, phosphorylation is often substoichiometric, requiring selective and sensitive methods to enrich phosphorylated peptides from complex cellular digests. Various methods have been devised for this purpose and we have recently described a Fe-IMAC HPLC column chromatography setup which is capable of comprehensive, reproducible, and selective enrichment of phosphopeptides out of complex peptide mixtures. ⋯ Here, we provide a step-by-step protocol for the entire phosphopeptide enrichment procedure including sample preparation (lysis, digestion, desalting), Fe-IMAC column chromatography (column setup, operation, charging), measurement by LC-MS/MS (nHPLC gradient, MS parameters) and data analysis (MaxQuant). To increase throughput, we have optimized several key steps such as the gradient time of the Fe-IMAC separation (15 min per enrichment), the number of consecutive enrichments possible between two chargings (>20) and the column recharging itself (<1 h). We show that the application of this protocol enables the selective (>90 %) identification of more than 10,000 unique phosphopeptides from 1 mg of HeLa digest within 2 h of measurement time (Q Exactive Plus).