Methods in molecular biology
-
ProStaR is a software tool dedicated to differential analysis in label-free quantitative proteomics. Practically, once biological samples have been analyzed by bottom-up mass spectrometry-based proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, by means of precursor ion chromatogram integration. ⋯ To achieve this statistical step, it is possible to rely on ProStaR, which allows the user to (1) load correctly formatted data, (2) clean them by means of various filters, (3) normalize the sample batches, (4) impute the missing values, (5) perform null hypothesis significance testing, (6) check the well-calibration of the resulting p-values, (7) select a subset of differentially abundant proteins according to some false discovery rate, and (8) contextualize these selected proteins into the Gene Ontology. This chapter provides a detailed protocol on how to perform these eight processing steps with ProStaR.
-
Network-aided in silico approaches have been widely used for prediction of drug-target interactions and evaluation of drug safety to increase the clinical efficiency and productivity during drug discovery and development. Here we review the advances and new progress in this field and summarize the translational applications of several new network-aided in silico approaches we developed recently. ⋯ These state-of-the-art network-aided in silico approaches have been used for the discovery and development of broad-acting and targeted clinical therapies for various complex diseases, in particular for oncology drug repositioning. In this chapter, the described network-aided in silico protocols are appropriate for target-centric drug repositioning to various complex diseases, but expertise is still necessary to perform the specific oncology projects based on the cancer targets of interest.
-
The emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology provides tools for researchers to modify genomes in a specific and efficient manner. The Type II CRISPR-Cas9 system enables gene editing by directed DNA cleavage followed by either non-homologous end joining (NHEJ) or homology-directed repair (HDR). Here, we described the use of the Type II CRISPR-Cas9 system in detail from designing the guides to analyzing the desired gene disruption events.
-
Gene editing has great therapeutic impact, being of interest for many scientists worldwide. Clustered regularly interspaced short palindromic repeats (CRISPR) technology has been adapted for gene editing to serve as an efficient, rapid, and cost-effective tool. ⋯ The gRNA targets the genome site to be edited, giving great importance to its design to obtain increased efficiency and decreased off-target events. In this chapter, we describe different tools to design suitable gRNAs for a variety of experimental purposes.
-
The increase in the number of Web-based resources on posttranslational modification sites (PTMSs) in proteins is accelerating. This chapter presents a set of computational protocols describing how to work with the Internet resources when dealing with PTMSs. The protocols are intended for querying in PTMS-related databases, search of the PTMSs in the protein sequences and structures, and calculating the pI and molecular mass of the PTM isoforms. Thus, the modern bioinformatics prediction tools make it feasible to express protein modification in broader quantitative terms.