Methods in molecular biology
-
Mass spectrometry-based proteomics analysis could categorize proteins and study their interactions in large scale in human cancers. By this method, many proteins are upregulated or downregulated in esophageal squamous cell carcinoma (ESCC) when compared to nonneoplastic esophageal mucosae. ⋯ Different biological matrices such as pathological tissue, body fluids, and cancer cell lines-based proteomics have widely been used. Herein, we described cell line-based label-free shotgun proteomics (in-solution tryptic digestion) to identify the protein biomarkers differently expressed in ESCC.
-
Pathological assessment of frozen sections of tissues is important in the clinical management (intraoperative consultation) and research in patients with esophageal squamous cell carcinoma. Frozen sections may be used in the assessment of status of resection margins, extent of cancer metastasis (pathological staging), confirmation of the pathology, and increased volume of cancer cells for tissue banking. However, the applications of frozen sections have many technical limitations. Thus, interpretation of frozen sections needs expertise, collaborations, and attention to proper technical skills in the sectioning.
-
The discovery of induced pluripotent stem cell (iPSC) technology has provided a versatile platform for basic science research and regenerative medicine. With the rise of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems and the ease at which they can be utilized for gene editing, creating genetically modified iPSCs has never been more advantageous for studying both organism development and potential clinical applications. However, to better understand the behavior and true therapeutic potential of iPSCs and iPSC-derived cells, a tool for labeling and monitoring these cells in vitro and in vivo is needed. ⋯ The approach involves the integration of the EGFP transgene into the transcriptionally active adeno-associated virus integration site 1 (AAVS1) locus through homology directed repair. The knockin of this transgene results in the generation of iPSC lines with constitutive expression of the EGFP protein that also persists in differentiated iPSCs. These EGFP-labeled iPSC lines are ideal for assessing iPSC differentiation in vitro and evaluating the distribution of iPSC-derived cells in vivo after transplantation into model animals.
-
Cryptosporidium has historically been a difficult organism to work with, and molecular genomic data for this important pathogen have typically lagged behind other prominent protist pathogens. CryptoDB ( http://cryptodb.org/ ) was launched in 2004 following the appearance of draft genome sequences for both C. parvum and C. hominis. CryptoDB merged with the EuPathDB Bioinformatics Resource Center family of databases ( https://eupathdb.org ) and has been maintained and updated regularly since its establishment. ⋯ Recent years have seen several new genome sequences for both existing and new Cryptosporidium species as well as transcriptomics, proteomics, SNP, and isolate population surveys. This chapter introduces the extensive data mining and visualization capabilities of the EuPathDB software platform and introduces the data types and tools that are currently available for Cryptosporidium. Key features are demonstrated with Cryptosporidium-relevant examples and explanations.
-
Immunohistochemistry is the identification of a cell protein by a specific antibody targeting that protein. It is the most common ancillary test to study the pathology of cancer. Immunohistochemical protein markers are used to differentiate poorly differentiated squamous cell carcinoma from poorly differentiated adenocarcinoma or neuroendocrine carcinomas. ⋯ Successful application of the immunochemistry depends on understanding the mechanisms and principles as well as the limitations of the procedure. Automation of the procedure by different models of automatic stainers is widely used in diagnostic laboratories. The use of autostainers streamlines the workflows and certainly reduces the labor, time, and cost of using immunohistochemistry in clinical and research settings.