Methods in molecular biology
-
Protein phosphorylation plays an essential role in the regulation of various cellular functions. Dysregulation of phosphorylation is implicated in the pathogenesis of certain cancers, diabetes, cardiovascular diseases, and central nervous system disorders. As a result, protein kinases have become potential drug targets for treating a wide variety of diseases. ⋯ However, identification of bona fide kinase substrates has remained challenging, necessitating the development of new methods and techniques. The kinase assay linked phosphoproteomics (KALIP) approach integrates in vitro kinase assays with global phosphoproteomics experiments to identify the direct substrates of protein kinases. This strategy has demonstrated outstanding sensitivity and a low false-positive rate for kinase substrate screening.
-
Isobaric tagging reagents have become an invaluable tool for multiplexed quantitative proteomic analysis. These reagents can label multiple, distinct peptide samples from virtually any source material (e.g., tissue, cell line, purified proteins), allowing users the opportunity to assess changes in peptide abundances across many different time points or experimental conditions. Here, we describe the application of isobaric peptide labeling, specifically 8plex isobaric tags for relative and absolute quantitation (8plex iTRAQ), for quantitative phosphoproteomic analysis of cultured cells or tissue suspensions. For this particular protocol, labeled samples are pooled, fractionated by strong cation exchange chromatography, enriched for phosphopeptides, and analyzed by tandem mass spectrometry (LC-MS/MS) for both peptide identification and quantitation.
-
Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. ⋯ We term this NLuc-based BRET platform "BRET(n)". BRET(n) has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRET(n) assay in a multi-well plate format to detect PPIs in live mammalian cells.
-
The central nervous system (CNS) is protected by blood-brain barrier (BBB) and blood-cerebrospinal-fluid (CSF) barrier that limit toxic agents and most molecules from penetrating the brain and spinal cord. However, these barriers also prevent most pharmaceuticals from entering into the CNS. Drug delivery to the CNS following neurotrauma is complicated. ⋯ And this likely leads to better dose selection of the drug, as well as recognition of any possible side effects, prior to transition into a clinical trial. Additionally, novel approach that is noninvasive and yet circumvents BBB, such as drug delivery through nerve pathways innervating the nasal passages, needs to be investigated in animal models, as it may provide a viable drug delivery method for patients who sustain mild CNS injury or require chronic treatments. Therefore, the focus of this chapter is to present rationales and methods for delivering drugs by IV infusion via the jugular vein, and intranasally in preclinical studies.
-
In recent years, mass spectrometry-based phosphoproteomics has propelled our knowledge about the regulation of cellular pathways. Nevertheless, typically applied bottom-up strategies have several limitations. Trypsin, the preferentially used proteolytic enzyme shows impaired cleavage efficiency in the vicinity of phosphorylation sites. ⋯ To overcome these limitations, we introduce an alternative and simple approach based on the usage of the nonspecific serine protease subtilisin, which enables a fast and reproducible digestion and provides access to "hidden" areas of the proteome. Thus, in a single LC-MS experiment >1800 phosphopeptides were confidently identified and localized from 125 μg of HeLa digest, compared to >2100 sites after tryptic digestion. While the overlap was less than 20 %, subtilisin allowed the identification of many phosphorylation sites that are theoretically not accessible via tryptic digestion, thus considerably increasing the coverage of the phosphoproteome.