Methods in molecular biology
-
Traumatic brain injury (TBI) is the leading cause of death in young adults in industrialized nations and in the developing world the WHO considers TBI a silent epidemic caused by an increasing number of traffic accidents. Despite the major improvement of TBI outcome in the acute setting in the past 20 years, the assessment, therapeutic interventions, and prevention of long-term complications remain a challenge. ⋯ In addition, limitations and advantages of each TBI model are mentioned. This will hopefully give an insight into the possibilities of each model and be of value in choosing one when designing a study.
-
Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. ⋯ Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties, and discusses their potential application for translational research.
-
A high number of infectious diseases affecting livestock and companion animals are caused by pathogens of viral etiology. Ensuring the maximum standards of quality and welfare in animal production requires developing effective tools to halt and prevent the spread of those infectious diseases affecting animal husbandry. ⋯ One step ahead is needed to improve and adapt vaccine manufacturing to the use of new generation vaccine technologies already tested in experimental settings. Here we present in the context of animal viral diseases of veterinary interest, an overview of some current vaccine technologies that can be approached for virus pathogens with a brief insight in the type of immunity elicited.
-
Successful therapy for TBI disabilities awaits refinement in the understanding of TBI neurobiology, quantitative measurement of treatment-induced incremental changes in recovery trajectories, and effective translation to human TBI using quantitative methods and protocols that were effective to monitor recovery in preclinical models. Details of the specific neurobiology that underlies these injuries and effective quantitation of treatment-induced changes are beginning to emerge utilizing a variety of preclinical and clinical models (for reviews see (Morales et al., Neuroscience 136:971-989, 2005; Fujimoto et al., Neurosci Biobehav Rev 28:365-378, 2004; Cernak, NeuroRx 2:410-422, 2005; Smith et al., J Neurotrauma 22:1485-1502, 2005; Bose et al., J Neurotrauma 30:1177-1191, 2013; Xiong et al., Nat Rev Neurosci 14:128-142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67-84, 2009; Johnson et al., Handb Clin Neurol 127:115-128, 2015; Bose et al., Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, CRC Press/Taylor & Francis, Boca Raton, 2015)). Preclinical models of TBI, essential for the efficient study of TBI neurobiology, benefit from the setting of controlled injury and optimal opportunities for biometric quantitation of injury and treatment-induced changes in the trajectories of disability. ⋯ Accordingly, use of this preclinical model offers an opportunity for (a) gaining a greater understanding of the relationships of TBI induced diffuse axonal injuries and associated long term disabilities, and (b) to provide a platform for quantitative assessment of treatment interactions upon the trajectories of TBI-induced disabilities. Using the impact acceleration closed head TBI model to induce mild/moderate injuries in the rat, we have observed and quantitated multiple morbidities commonly observed following TBI in humans (Bose et al., J Neurotrauma 30:1177-1191, 2013). This chapter describes methods and protocols used for TBI-induced multiple morbidity involving cognitive dysfunction, balance instability, spasticity and gait, and anxiety-like disorder.
-
Luminescence exerts an ideal optical readout for imaging living subjects including no external light source, whereas the dim luminescence and poor color pallet should be addressed for the better utilities. To address the demerits and to prevail the advantages, we developed a bright luminescent protein, named yellow Nano-lantern, exhibiting about 10-20 times brighter than wild-type RLuc. In this chapter, we demonstrate two luminescence-based protocols in detail: i.e., (a) multicolor visualization of Ca(2+) dynamics in different cellular compartments in a single cell using Ca(2+) indicators based on cyan- and orange-Nano-lanterns and (b) video-rate tumor detection in a freely moving mouse using yellow Nano-lantern.