Methods in molecular biology
-
Genome editing in eukaryotes has greatly improved through the application of targeted editing tools. The development of the CRISPR/Cas9 technology has facilitated genome editing in mammalian cells. However, efficient delivery of CRISPR components into cells growing in suspension remains a challenge. ⋯ Stable Cas9 expression is obtained by retroviral transduction, before sgRNA is transiently delivered into the Cas9+ cells. This method improves the on-target efficiency of genome editing and, through the transient presence of sgRNA, reduces the potential off-target sites. The current method can be easily applied to other cell types that are difficult to edit with CRISPR/Cas9.
-
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
-
The discovery of induced pluripotent stem cell (iPSC) technology has provided a versatile platform for basic science research and regenerative medicine. With the rise of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems and the ease at which they can be utilized for gene editing, creating genetically modified iPSCs has never been more advantageous for studying both organism development and potential clinical applications. However, to better understand the behavior and true therapeutic potential of iPSCs and iPSC-derived cells, a tool for labeling and monitoring these cells in vitro and in vivo is needed. ⋯ The approach involves the integration of the EGFP transgene into the transcriptionally active adeno-associated virus integration site 1 (AAVS1) locus through homology directed repair. The knockin of this transgene results in the generation of iPSC lines with constitutive expression of the EGFP protein that also persists in differentiated iPSCs. These EGFP-labeled iPSC lines are ideal for assessing iPSC differentiation in vitro and evaluating the distribution of iPSC-derived cells in vivo after transplantation into model animals.
-
CRISPR Cas9 genome editing allows researchers to modify genes in a multitude of ways including to obtain deletions, epitope-tagged loci, and knock-in mutations. Within 6 years of its initial application, CRISPR-Cas9 genome editing has been widely employed, but disadvantages to this method, such as low modification efficiencies and off-target effects, need careful consideration. Obtaining custom donor vectors can also be expensive and time-consuming. This chapter details strategies to overcome barriers to CRISPR-Cas9 genome editing as well as recent developments in employing this technique.
-
Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform.
The replicative aging of the budding yeast, Saccharomyces cerevisiae, has been a useful model for dissecting the molecular mechanisms of the aging process. Traditionally, the replicative lifespan (RLS) is measured by manually dissecting mother cells from daughter cells, which is a very tedious process. Since 2012, several microfluidic systems have been developed to automate the dissection process, significantly accelerating RLS determination. Here, we describe a detailed protocol of RLS measurement using a ommercially available microfluidic system based on the HYAA chip design, which enables data collection of up to 8000 cells in a single experiment.