Methods in molecular biology
-
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. ⋯ Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.
-
Spinal cord injury-induced pain is a common clinical problem affecting adversely the quality of daily lives of spinal cord injured patients. Management with current pain medications can only lead to partial pain relief in some spinal cord injured patients, which is usually associated with unfavorable side effects. ⋯ We describe here the generation of a spinal cord contusion injury model that mimics the etiology and phenotypes of chronic pain states in spinal cord injured patients. Therefore, this model can be a useful tool for studying spinal cord injury mechanisms, functional recovery, research, and development of new medications for better functional and symptomatic improvements, including pain management.
-
Developments in psychoneuroimmunology (PNI) need to be translated into personalized medicine to achieve better clinical outcomes. One of the most critical steps in this translational process is to identify systemic biomarkers for better diagnosis and treatment. Applications of systems biology approaches in PNI would enable the insights into the correlations among various systems and different levels for the identification of the basic elements of the psychophysiological framework. ⋯ The understanding of the general systemic pathways among different disorders may contribute to the transition from the disease-centered medicine to patient-centered medicine. Integrative strategies targeting these factors and pathways would be useful for the prevention and treatment of a spectrum of diseases that share the common links. Examples of the translational implications of potential PNI biomarkers and networks in diseases including depression, Alzheimer's disease, obesity, cardiovascular disease, stroke, and HIV are discussed in details.
-
The spared nerve injury (SNI) model mimics human neuropathic pain related to peripheral nerve injury and is based upon an invasive but simple surgical procedure. Since its first description in 2000, it has displayed a remarkable development. ⋯ Besides, variants of the SNI model have been developed in rats, mice and neonatal/young rodents, resulting in several possible angles of analysis. Therefore, the purpose of this chapter is to provide a detailed guidance regarding the SNI model and its variants, highlighting its surgical and behavioural testing specificities.
-
Mitochondria are considered as the main source of reactive oxygen species (ROS) in the cell. For this reason, they have been recognized as a source of various pathological conditions as well as aging. Chronic increase in the rate of ROS production is responsible for the accumulation of ROS-associated damages in DNA, proteins, and lipids, and may result in progressive cell dysfunctions and, in a consequence, apoptosis, increasing the overall probability of an organism's pathological conditions. ⋯ In this chapter, we describe a relation between mitochondrial membrane potential and the rate of ROS formation. We present different methods applicable for isolated mitochondria or intact cells. We also present experiments demonstrating that a magnitude and a direction (increase or decrease) of a change in mitochondrial ROS production depends on the metabolic state of this organelle.