Methods in molecular biology
-
Psychoneuroimmunology (PNI) may provide the scientific basis for personalized and systems medicine. The exploration of the extensive interactions among psychological and behavioral factors, the nervous system, the immune system, and the endocrine system may help understand the mechanisms underlying health, wellness, and diseases. PNI theories based on systems biology methodologies may contribute to the identification of patient patterns for establishing psychological and physiological profiles for personalized medicine. ⋯ As inflammation is a critical connection among different diseases, the elucidation of the associations may contribute to the findings of systemic therapeutic targets. With the understanding of the translational implications of PNI, integrative interventions in multiple dimensions can be applied to modulate stress responses and promote healthier behaviors. These interventions include combination drug therapies, diets, nutritional supplements, meditation, and other behavioral and mind-body strategies.
-
Serglycin is a proteoglycan composed of a relatively small (~17 kDa) core protein to which sulfated glycosaminoglycans of either heparin, heparan sulfate or chondroitin sulfate types are attached. Serglycin is expressed in many cell types, including in particular cells of hematopoietic origin. ⋯ Moreover, the absence of serglycin caused a dramatic effect on the ability of mast cells to store a number of granule compounds, including several mast cell-specific proteases as well as biogenic amines. Hence, serglycin has a major function in maintaining mast cell secretory granule homeostasis.
-
Osteoarthritis (OA) is one form of degenerative joint disease characterized by progressive loss of articular cartilage, decreased function and is frequently accompanied by chronic pain. Given the success of arthroplasty as a treatment for late-stage OA, there is considerable interest in developing therapies pertaining to the management of pain associated with OA as well as therapies designed to slow or reverse the progression of the disease. ⋯ Here, we describe a model of OA-related pain in which progressive joint destruction is induced by injection of monosodium iodoacetate into the articular space of the knee of the rat. Further, we describe three different methods to measure pain-related behaviors in this model: hind limb weight bearing, primary mechanical hyperalgesia, and hind limb grip strength.
-
Exon skipping is currently one of the most promising molecular therapies for Duchenne muscular -dystrophy (DMD). We have recently developed multiple exon skipping targeting exons 6 and 8 in -dystrophin mRNA of canine X-linked muscular dystrophy (CXMD), an animal model of DMD, which exhibits severe dystrophic phenotype in skeletal muscles and cardiac muscle. We have induced efficient exon skipping both in vitro and in vivo by using cocktail antisense 2'O-methyl oligonucleotides (2'OMePS) and cocktail phosphorodiamidate morpholino oligomers (morpholinos, or PMOs) and ameliorated phenotype of dystrophic dogs by systemic injections. The multiple exon skipping (double exon skipping) shown here provides the prospect of choosing deletions that optimize the functionality of the truncated dystrophin protein for DMD patients by using a common cocktail that could be validated as a single drug and also potentially applicable for more than 90% of DMD patients.
-
In the past decades, a variety of publicly available data repositories and resources have been developed to support protein related information management, data-driven hypothesis generation and biological knowledge discovery. However, there is also an increasing confusion for the researchers who are trying to quickly find the appropriate resources to help them solve their problems. In this chapter, we present a comprehensive review (with categorization and description) of major protein bioinformatics databases and resources that are relevant to comparative proteomics research. We conclude the chapter by discussing the challenges and opportunities for developing new protein bioinformatics databases.