Methods in molecular biology
-
Tumor-associated antigens (TAAs) can be used as cancer markers and as signposts of therapeutic targets since their inimitable expression in cancer or significant overexpression in esophageal squamous cell carcinoma (ESCC) correlates with the initiation and progression of the diseases. Immunoblotting, also known as Western blotting or protein blotting, is a core technique in cell and molecular biology to detect proteins and glycoproteins. The technique allows detection of TAAs from complex protein samples such as in serum, aspirate, or solid tumor homogenate. ⋯ They were visualized within a gel matrix and then transferred to a supporting membrane. Finally, they are probed for binding with corresponding antibodies and identified the target proteins. Herein, we describe the Western blots analysis to detect protein or glycoprotein in samples from patients with esophageal squamous cell carcinoma (ESCC) or cells derived from ESCC.
-
While surgery plays a major role in the treatment and potential cure of esophageal cancers, esophagectomy remains a high-risk operation with significant perioperative morbidity and mortality compared to other oncosurgical procedures. Perioperative management for esophagectomy is complex, and close attention to detail in various areas of anesthetic and perioperative management is crucial to improve postoperative outcomes. Patients undergoing esophagectomy should be offered an evidence-based risk assessment for their postoperative outcomes to allow active participation and informed, shared-decision making. ⋯ Furthermore, anesthetic practice and perioperative anesthetic drug usage can potentially affect cancer progression and recurrence. This chapter reviews current evidence for various factors that contribute to the improvement of perioperative outcomes, including prehabilitation, preoperative optimization of anemia, thoracic epidural analgesia, intraoperative protective ventilatory strategies, goal-directed fluid therapy, as well as special attention to other perioperative issues that potentially reduce anastomotic and cardiopulmonary complications. In summary, it is difficult to show a measurable benefit from any one single intervention, and a multidisciplinary approach that encompasses multiple aspects of perioperative care is necessary to improve outcomes after esophagectomy.
-
Histological assessment of esophageal squamous malignancies is crucial for management of patients with the cancer as well as working in research on the cancer. The squamous malignancies in the esophagus comprise squamous dysplasia and squamous cell carcinoma. Current classification of squamous dysplasia in the esophagus is to divide it into low grade and high grade. ⋯ Preoperative chemoradiation is used commonly in the treatment of esophageal squamous cell carcinoma and induces changes in morphology. Tumor regression grading systems based on the percentage of the remaining carcinoma cells are used to assess the response to the neoadjuvant therapy in the cancer. Additional histological parameters including lymphovascular invasion, perineural invasion, clearance of resection margins, and carcinoma in the nodal and distant metastatic sites provide essential information for the management of the patient with the cancer.
-
Circulating tumor cells (CTC) harvested in the blood of patients with esophageal squamous cell carcinoma (ESCC) are associated with certain clinical pathological parameters as well as patients' prognosis and response to chemoradiation. They are the source of distant metastases and their mechanisms of pathogenesis is complex. ⋯ The most commonly used is detection by immunomagnetic method. Although all these methods have limitations, they are helpful for understanding the pathogenesis of CTCs with potential applications in clinical managements in patients with ESCC.
-
The simple applicability and facile target programming of the CRISPR/Cas9-system abolish the major boundaries of previous genome editing tools, making it the tool of choice for generating site-specific genome alterations. Its versatility and efficacy have been demonstrated in various organisms; however, accurately predicting guide RNA efficiencies remains an organism-independent challenge. Thus, designing optimal guide RNAs is essential to maximize the experimental outcome. Here, we summarize the current knowledge for guide RNA design and highlight discrepancies between different experimental systems.