NeuroImage
-
Pain is processed in multiple brain areas, indicating the complexity of pain perception. The ability to locate pain plays a pivotal role in immediate defense and withdrawal behavior. However, how the brain localizes nociceptive information without additional information from somatotopically organized mechano-receptive pathways is not well understood. ⋯ More importantly, this contralateral bias of activation allowed functionally segregated activations within the SII complex, the insula, and the thalamus. Only distinct subregions of the SII complex, the posterior insula and the lateral thalamus, but not the remaining SII complex, the anterior insula and the medial thalamus, showed a contralaterally biased representation of painful stimuli. This result supports the hypothesis that sensory-discriminative attributes of painful stimuli, such as those related to body side, are topospecifically represented within the forebrain projections of the nociceptive system and highlights the concept of functional segregation and specialization within these structures.
-
Using fMRI, neural substrates of verbal working memory were investigated with respect to differences in working memory capacity. Listening-span test (LST), Listen, and Remember conditions were performed. Two subjects groups were selected: those who had large working memory capacities, labeled high-span subjects (HSS) according to the working memory span test, and those who had small working memory capacities, labeled low-span subjects (LSS). ⋯ A group difference was found in the ACC region; specifically, a significant increase in signal intensity was observed in ACC only for the HSS group and not for the LSS group. Behavioral data also showed that the performance was better in HSS than in LSS. These results indicate that the attention controlling system, supported by ACC, is more effective in HSS compared to that of LSS.