NeuroImage
-
Analysis of the apparent diffusion coefficient (ADC) maps derived from diffusion-weighted MR imaging is emerging as a reproducible, sensitive, and quantitative tool to evaluate brain damage in diseases of the white and gray matter. To explore the potentials of ADC maps analysis in degenerative ataxias, we examined 28 patients and 26 age-matched controls with T1, T2, and diffusion (b values 0-1000 along the three main body axes)-weighted MR images. Twenty-four patients had inherited genetically proven diseases including spinocerebellar ataxia type 1 (SCA1) (n = 9), spinocerebellar ataxia type 2 (SCA2) (n = 8), and Friedreich's ataxia (FA) (n = 7), whereas four patients had sporadic adult onset pure cerebellar ataxia (three idiopathic, one gluten intolerance). ⋯ The SA group showed (P < 0.001) an increased D in the medulla only. A correlation between clinical severity as assessed with the Inherited Ataxias Clinical Rating Scale (IACRS) and the 50th percentile of the D value in the brainstem and cerebellum histogram (r = 0.69) was observed in patients with SCA1 or SCA2. Diffusion MR imaging reveals variable patterns of increase of D in the brainstem, cerebellum, and cerebral hemispheres in degenerative ataxias that match the known distribution of the neuropathological changes.