NeuroImage
-
This study investigates the effect of awareness of stimulus contingencies on BOLD responses within the amygdala, the orbitofrontal, and the occipital cortex, and on differential skin conductance responses (SCRs) during fear conditioning. Of two geometric figures, the paired conditioned stimulus (CS+) predicted an electrical stimulus (unconditioned stimulus = UCS), whereas the unpaired conditioned stimulus (CS-) was not followed by the UCS. Awareness of stimulus contingencies was manipulated experimentally, creating an aware and an unaware group: a distracter figure and a working memory task were introduced to conceal the stimulus contingencies of the conditioning paradigm, hence preventing contingency detection in the unaware group. ⋯ Conversely, we observed enhanced responses of the amygdala, the orbitofrontal, and the occipital cortex to the CS+ in the unaware group only. Thus, we found a dissociation of SCR differentiation and the activation of a neural fear network depending on the presence or absence of awareness. These results support a model of fear conditioning that distinguishes between a more cognitive level of learning, reflected in contingency awareness and differential SCRs, and the awareness independent activation of a fear network.
-
Idiopathic generalized epilepsies (IGE) are a group of frequent age-related epilepsy syndromes. IGE are clinically characterized by generalized tonic-clonic, myoclonic and absence seizures. According to predominant seizure type and age of onset, IGE are divided in subsyndromes: childhood absence and juvenile absence epilepsy (AE), juvenile myoclonic epilepsy (JME) and generalized tonic-clonic seizures on awakening (GTCS). ⋯ Region of interest analysis showed increased GMC in the anterior portion of the thalamus in patients with absence seizures. Our results support subtle GMC abnormalities in patients with JME and AE when compared to controls. These findings suggest the existence of different patterns of cortical abnormalities in IGE subsyndromes.
-
The question as to whether coexisting tic disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) in children represent a combination of two independent pathologies, a separate nosologic entity manifested by both tics and hyperactivity or a phenotype subgroup of one of the two major clinical forms has received increasing attention. The aim of the present study was to classify the TD+ADHD comorbidity in the neurocognitive domain and to elucidate the neurophysiological background of TD+ADHD coexistence by analyzing event-related electroencephalographic (EEG) oscillations in the theta (3-7.5 Hz) frequency band. ⋯ (1) A new model is proposed according to which TD+ADHD comorbidity can be classified at different levels (from neurobiological to cognitive). (2) The functional significance of stimulus-synchronized theta oscillations in children is described for the first time.
-
The present study used functional magnetic resonance imaging to examine cortical specialization for letter processing. We assessed whether brain regions that were involved in letter processing exhibited domain-specific and/or mandatory responses, following Fodor's definition of properties of modular systems (Fodor, J. A., 1983. ⋯ These regions likely subserve some linguistically oriented cognitive process that is unique to letters, such as grapheme-to-phoneme translation or retrieval of phonological codes for letter names. Hence, cortical specialization for letters emerged in the naming task in some peri-sylvian language related cortices, but not in occipito-temporal cortex. Given that the domain-specific response for letters in left peri-sylvian regions was only present in the naming task, these regions do not process letters in a mandatory fashion, but are instead modulated by the linguistic nature of the task.
-
In the complex regional pain syndrome (CRPS), several theories proposed the existence of pathophysiological mechanisms of central origin. Recent studies highlighted a smaller representation of the CRPS-affected hand on the primary somatosensory cortex (SI) during non-painful stimulation of the affected side. We addressed the question whether reorganizational changes can also be found in the secondary somatosensory cortex (SII). ⋯ Mean sustained, but not current pain levels were correlated with the amount of sensory impairment and the reduction in signal strength. We conclude that patterns of cortical reorganization in SI and SII seem to parallel impaired tactile discrimination. Furthermore, the amount of reorganization and tactile impairment appeared to be linked to characteristics of CRPS pain.