NeuroImage
-
Since hippocampal volume has been found to be an early biomarker for Alzheimer's disease, there is large interest in automated methods to accurately, robustly, and reproducibly extract the hippocampus from MRI data. In this work we present a segmentation method based on the minimization of an energy functional with intensity and prior terms, which are derived from manually labelled training images. The intensity energy is based on a statistical intensity model that is learned from the training images. ⋯ Also, the proposed method was used to repeat the manual hippocampal volumetry study. The automatically obtained hippocampal volumes showed significant associations with cognitive decline and dementia, similar to the manually measured volumes. Finally, direct quantitative and qualitative comparisons showed that the proposed method outperforms a multi-atlas based segmentation method.