NeuroImage
-
Diffusion Tensor Imaging (DTI) data is characterized by a high noise level. Thus, estimation errors of quantities like anisotropy indices or the main diffusion direction used for fiber tracking are relatively large and may significantly confound the accuracy of DTI in clinical or neuroscience applications. ⋯ It is applied to artificial phantom data and a brain scan. We show that this method significantly improves the quality of the estimate of the diffusion tensor, by means of both bias and variance reduction, and hence enables one either to reduce the number of scans or to enhance the input for subsequent analysis such as fiber tracking.
-
Gender greatly influences pain processing. Not only do females display greater pain sensitivity, many chronic pain conditions affect females more than males. Although gender-based differences in pain sensitivity may be related to cultural and social factors, animal studies also reveal gender differences in pain sensitivity, suggesting that physiological factors may contribute to differences in the processing of pain in males and females. ⋯ In 24 healthy adults we used functional magnetic resonance imaging (fMRI) to measure signal intensity changes during muscle and cutaneous pain induced by intramuscular and subcutaneous injections of hypertonic saline, respectively. In addition to activating the "pain neuromatrix", i.e. cingulate, insular, somatosensory and cerebellar cortices, both muscle pain and cutaneous pain evoked gender-based differences in the mid-cingulate cortex, dorsolateral prefrontal cortex, hippocampus and cerebellar cortex. These differences may reflect differences in emotional processing of noxious information in men and women and may underlie the gender bias that exists in many chronic pain conditions.
-
The corpus callosum (CC) is of great interest for pathophysiological models of schizophrenia. Volume and structural integrity of the CC have been examined by volumetric and diffusion tensor imaging (DTI) studies, but results were not consistent across methods or studies. A possible explanation may be varying methodologies and accuracy of measurements based on a single slice or small regions of interest. ⋯ The results emphasize the importance of using different methods in evaluation of white matter (WM) in schizophrenia to avoid false negative findings. In addition, the measures were highly correlated with each other, implying a common pathological process influencing FA, MD and volume of the CC. Although we cannot rule out other mechanisms affecting volume, FA and MD, converging evidence from cytoarchitectonic and genetic studies suggests that WM changes observed in schizophrenia may involve disintegration of healthy, functional axons and strengthening of aberrant connections resulting in increased severity of clinical symptoms.
-
Patients with severe and chronic neurogenic pain are known to exhibit excess EEG oscillations in the 4- to 9-Hz theta frequency band in comparison with healthy controls. The generators of these excess EEG oscillations are localized in the cortical pain matrix. Since cortex and thalamus are tightly interconnected anatomically, we asked how thalamic activity and EEG are functionally related in these patients. ⋯ Median thalamocortical theta coherence was 27%, reached up to 68% and was maximal with frontal midline scalp sites. The observed high thalamocortical coherence underlines the importance of the thalamus for the synchronization of scalp EEG. We discuss the pathophysiology within the framework of a dysrhythmic thalamocortical interplay, which has important consequences for the choice of therapeutic strategy in patients with chronic and severe forms of neurogenic pain.
-
The aim of the study was to investigate if an abnormal brain response to pain exists in patients with myofascial pain syndrome (MPS) when stimulated in a hypersensitive myofascial trigger point (MTP). Event-related functional magnetic resonance imaging was used to characterize the brain response to pain evoked from an MTP. Activation patterns from patients were compared with those evoked from an equivalent site in healthy controls with stimulus intensity matched and pain intensity matched stimuli. ⋯ At matched pain intensity, enhanced activity was found in the same somatosensory areas but not in limbic areas. Our results show that the hyperalgesic state observed in MPS patients was associated with abnormal hyperactivity in regions processing stimulus intensity and negative affect. We speculate that suppressed hippocampal activity might reflect stress-related changes in relation to chronic pain as an effective physical and emotional stressor.